抽象代数 04.02 群在集合上的作用

http://www.icourses.cn 南开大学《抽象代数》

§4.2 群在集合上的作用 {\color{blue}\text{\S 4.2 群在集合上的作用}} §4.2 群在集合上的作用

问 题 4.2.1. 群 的 分 类 和 实 现 ( 抽 象 → 具 体 ) : 群 同 态 ( 有 时 同 构 不 如 同 态 , 如 : 1 : 1 的 地 图 ) 问题4.2.1.群的分类和实现(抽象\to 具体):群同态(有时同构不如同态,如:1:1的地图) 4.2.1.():(,:1:1)
π : G → S X \qquad \pi : G \to S_X π:GSX
π ( x y ) = π ( x ) π ( y ) \qquad \pi(xy) = \pi(x) \pi(y) π(xy)=π(x)π(y)
例 4.2.2. 例4.2.2. 4.2.2.
1 ) ( C a y l e y 定 理 ) : G ≅ L G ≅ R G 1)(\mathbf{Cayley}定理):G \cong L_G \cong R_G 1)(Cayley):GLGRG
2 ) ( 内 自 同 构 ) a d : G → I n t ( G ) , a d g = L g R g − 1 2)(内自同构) \mathrm{ad}:G \to \mathrm{Int}(G),\mathrm{adg} = L_gR_{g^{-1}} 2)()ad:GInt(G),adg=LgRg1
3 ) π : G → S X , π ( g ) = i d X 3)\pi : G \to S_X, \pi(g) = \mathrm{id}_X 3)πGSX,π(g)=idX
问 题 4.2.3 如 何 建 立 群 同 态 ? 问题4.2.3 如何建立群同态? 4.2.3
定 义 4.2.4. 设 G 是 一 个 群 , X 是 一 个 非 空 集 合 。 若 映 射 {\color{blue}定义4.2.4.}设G是一个群,X是一个非空集合。若映射 4.2.4.GX
f : G × X → X , ( g , x ) → f ( g , x ) \qquad f:G \times X \to X, (g, x) \to f(g, x) f:G×XX,(g,x)f(g,x)
满 足 对 任 何 x ∈ X , g 1 , g 2 ∈ G 都 有 满足对任何x \in X, g_1, g_2 \in G都有 xX,g1,g2G
f ( 1 , x ) = x , \qquad f(1, x) = x, f(1,x)=x,
f ( g 1 g 2 , x ) = f ( g 1 , f ( g 2 , x ) ) , \qquad f(g_1g_2, x) = f(g_1, f(g_2, x)), f(g1g2,x)=f(g1,f(g2,x)),
则 称 f 决 定 了 G 在 X 上 的 一 个 作 用 . 则称f决定了G在X上的一个{\color{blue}作用}. fGX.
例 4.2.5 1 ) 左 平 移 作 用 ; 2 ) 右 平 移 作 用 ; 3 ) 伴 随 作 用 例4.2.5\quad 1)左平移作用; 2)右平移作用; 3)伴随作用 4.2.51);2);3)
定 义 4.2.6. 可 递 作 用 , 齐 性 空 间 , 有 效 作 用 , 平 凡 作 用 {\color{blue}定义4.2.6.可递作用,齐性空间,有效作用,平凡作用} 4.2.6.,,
命 题 4.2.7. G 在 X 上 的 作 用 是 有 效 的 , 当 且 仅 当 对 应 的 群 同 态 是 单 射 。 {\color{blue}命题4.2.7.}G在X上的作用是有效的,当且仅当对应的群同态是单射。 4.2.7.GX
例 4.2.8. G L ( n , R ) , S O ( n ) 作 用 在 R n 上 。 例4.2.8. GL(n, \mathbb{R}), SO(n)作用在\R^n上。 4.2.8.GL(n,R),SO(n)Rn
S O ( n ) 作 用 在 S n − 1 上 SO(n)作用在S^{n-1}上 SO(n)Sn1
S n 作 用 在 n 元 多 项 式 环 上 S_n作用在n元多项式环上 Snn
G L ( n , R ) 在 R n × n 的 左 乘 、 右 乘 、 相 似 、 合 同 GL(n,\R)在\R^{n \times n}的左乘、右乘、相似、合同 GL(n,R)Rn×n
问 题 4.2.9. 相 抵 是 不 是 群 作 用 ? 问题4.2.9.相抵是不是群作用? 4.2.9.?
定 义 4.2.10. 限 制 作 用 : H &lt; G , G 在 X 上 的 作 用 可 以 自 然 得 到 H 在 X 上 的 作 用 。 {\color{blue}定义4.2.10.\quad 限制作用:}H &lt; G,G在X上的作用可以自然得到H在X上的作用。 4.2.10.:H<G,GXHX
问 题 4.2.11. 对 什 么 样 子 的 子 集 X 1 ⊂ X 使 得 G 在 X 上 的 作 用 可 以 限 制 为 G 在 X 1 上 的 作 用 ? 问题4.2.11.对什么样子的子集X_1 \subset X使得G在X上的作用可以限制为G在X_1上的作用? 4.2.11.X1X使GXGX1
问 题 4.2.12. 对 什 么 样 子 的 子 集 X 1 ⊂ X 使 得 G 在 X 1 上 的 作 用 可 以 限 制 为 G 在 X 上 的 作 用 ? 问题4.2.12.对什么样子的子集X_1 \subset X使得G在X_1上的作用可以限制为G在X上的作用? 4.2.12.X1X使GX1GX
X 1 满 足 的 充 要 条 件 是 对 任 意 g ∈ G 有 g X 1 ⊂ X 1 。 类 似 于 线 性 变 换 中 的 不 变 子 空 间 的 研 究 : 最 小 的 这 样 子 的 子 集 是 什 么 样 的 ? X 是 否 是 这 样 的 子 集 的 不 交 并 ( 直 和 ? ) ? X_1满足的充要条件是对任意g \in G有gX_1 \subset X_1。类似于线性变换中的不变子空间的研究:最小的这样子的子集是什么样的?X是否是这样的子集的不交并(直和?)? X1gGgX1X1线:X()?
定 义 4.2.13. 设 群 G 作 用 在 集 合 X 上 , x ∈ X . 称 X 的 子 集 O x = { g x ∣ g ∈ G } 为 x 的 轨 道 。 ( 人 造 卫 星 的 轨 道 ) {\color{blue}定义4.2.13.\quad}设群G作用在集合X上,x \in X.称X的子集O_x = \lbrace gx | g \in G \rbrace 为x的{\color{blue}轨道}。(人造卫星的轨道) 4.2.13.GXxX.XOx={gxgG}x()
例 4.2.14.1 ) S n 作 用 在 P [ x 1 , ⋯ &ThinSpace; , x n ] 上 的 单 点 轨 道 例4.2.14.1)S_n作用在\mathbb{P}[x_1,\cdots,x_n]上的单点轨道 4.2.14.1)SnP[x1,,xn]
2 ) S O ( 2 ) 在 S 2 上 旋 转 作 用 的 轨 道 2)SO(2)在S^2上旋转作用的轨道 2)SO(2)S2
3 ) G L ( n , R ) 在 R n 上 的 作 用 的 轨 道 3)GL(n, \R)在\R^n上的作用的轨道 3)GL(n,R)Rn
4 ) S O ( n ) 作 用 在 R n 上 的 轨 道 4)SO(n)作用在\R^n上的轨道 4)SO(n)Rn
5 ) G L ( n , C ) 在 C n × n 上 的 相 似 作 用 的 轨 道 5)GL(n,\mathbb{C})在\mathbb{C}^{n \times n}上的相似作用的轨道 5)GL(n,C)Cn×n
6 ) G L ( n , R ) 在 对 称 矩 阵 全 体 的 合 同 作 用 下 的 轨 道 6)GL(n,\R)在对称矩阵全体的合同作用下的轨道 6)GL(n,R)
7 ) 仿 射 变 换 7)仿射变换 7)仿
命 题 4.2.15. 1 ) 设 x , y ∈ X 。 则 O x ∩ O y = ∅ 或 者 O x = O y . 进 一 步 , X 是 所 有 不 相 同 的 {\color{blue}命题4.2.15.}1)设x,y \in X。则O_x \cap O_y = \empty或者O_x = O_y.进一步,X是所有不相同的 4.2.15.1)x,yXOxOy=Ox=Oy.,X
轨 道 的 不 交 并 , 或 者 说 所 有 不 相 同 的 轨 道 构 成 X 的 一 个 划 分 。 可 以 在 X 上 定 义 等 轨道的不交并,或者说所有不相同的轨道构成X的一个划分。可以在X上定义等 XX
价 关 系 。 价关系。
2 ) G 在 X 上 的 作 用 自 然 可 以 限 制 为 G 在 O x 上 的 作 用 , 该 作 用 可 递 。 因 此 , G 在 X 的 2)G在X上的作用自然可以限制为G在O_x上的作用,该作用可递。因此,G在X的 2)GXGOxGX
作 用 可 递 当 且 仅 当 X 中 只 有 一 个 轨 道 。 作用可递当且仅当X中只有一个轨道。 X
3 ) G 在 O x 上 的 作 用 有 效 的 充 要 条 件 ? 3)G在O_x上的作用有效的充要条件? 3)GOx
我 们 先 考 虑 G 在 X 上 的 作 用 是 可 递 的 情 况 , 即 X 本 身 就 是 一 个 轨 道 。 因 此 , 对 任 意 我们先考虑G在X上的作用是可递的情况,即X本身就是一个轨道。因此,对任意 GXX
x ∈ X , X = O x . 固 定 x ∈ X , 我 们 有 如 下 映 射 x \in X,X = O_x.固定x \in X,我们有如下映射 xX,X=Ox.xX,
φ x : G → X , φ x ( g ) = g x . \qquad \varphi_x:G \to X, \varphi_x(g) = gx. φx:GX,φx(g)=gx.
这 实 际 上 就 是 作 用 G × X → X 固 定 第 二 个 变 量 得 到 的 。 自 然 的 , φ x ( 1 ) = x . 这实际上就是作用G \times X \to X固定第二个变量得到的。自然的,\varphi_x(1) = x. G×XXφx(1)=x.
显 然 , 映 射 φ x 是 满 射 , 每 个 g x ∈ O x 的 原 象 是 什 么 ? 显然,映射\varphi_x是满射,每个gx \in O_x的原象是什么? ,φxgxOx
A : φ x − 1 ( x ) = { h ∈ G ∣ h x = x } . 这 个 集 合 是 G 的 子 群 , 记 为 F x , 称 为 x 的 迷 向 子 群 . {\color{green}A:}\varphi_x^{-1}(x)= \lbrace h \in G | hx = x \rbrace.这个集合是G的子群,记为F_x,称为x的{\color{blue}迷向子群}. A:φx1(x)={hGhx=x}.GFx,x.
例 4.2.16 ( 迷 向 子 群 ) . 例4.2.16(迷向子群). 4.2.16().
1. S n 作 用 在 { 1 , 2 , ⋯ &ThinSpace; , n } 上 的 迷 向 子 群 。 1. S_n作用在\lbrace 1, 2, \cdots, n \rbrace上的迷向子群。 1.Sn{1,2,,n}
2. S O ( n ) 作 用 在 S n − 1 上 可 递 , 点 ( 1 , 0 , ⋯ &ThinSpace; , 0 ) 的 迷 向 子 群 d i a g ( 1 , S O ( n − 1 ) ) . 2. SO(n)作用在S^{n-1}上可递,点(1, 0, \cdots, 0)的迷向子群\mathrm{diag}(1, SO(n-1)). 2.SO(n)Sn1(1,0,,0)diag(1,SO(n1)).
3. G L ( n , R ) 作 用 在 R n ∖ { 0 } 上 的 迷 向 子 群 。 3. GL(n,\R)作用在\R^n \setminus \lbrace 0 \rbrace 上的迷向子群。 3.GL(n,R)Rn{0}
B : φ x − 1 ( g x ) = { h ∈ G ∣ h x = g x } = { h ∈ G ∣ g − 1 h x = x } = { h ∈ G ∣ g − 1 h ∈ F x } = { h ∈ G ∣ h ∈ g F x } = g F x 。 即 , g x 的 原 像 是 F x 的 左 陪 集 g F x . {\color{green}B:}\varphi_x^{-1}(gx) = \lbrace h \in G | hx = gx \rbrace = \lbrace h \in G | g^{-1}hx = x \rbrace = \lbrace h \in G | g^{-1}h \in F_x \rbrace = \lbrace h \in G | h \in gF_x \rbrace = gF_x。即,gx的原像是F_x的左陪集gF_x. B:φx1(gx)={hGhx=gx}={hGg1hx=x}={hGg1hFx}={hGhgFx}=gFx,gxFxgFx.
这 样 , 我 们 得 到 一 个 双 射 φ : G / F x → O x 。 于 是 , 这 两 个 集 合 存 在 一 一 对 应 。 这样,我们得到一个双射\varphi:G/F_x \to O_x。于是,这两个集合存在一一对应。 φ:G/FxOx
而 两 者 上 都 有 G 的 作 用 。 这 样 我 们 得 到 交 换 图 而两者上都有G的作用。这样我们得到交换图 G
定 义 4.2.17. 设 群 G 作 用 在 集 合 X 与 X ′ 上 , 若 有 X 到 X ′ 的 一 一 对 应 φ 使 得 {\color{blue}定义4.2.17.}设群G作用在集合X与X^{\prime}上,若有X到X^{\prime}的一一对应\varphi使得 4.2.17.GXXXXφ使
g ( φ ( x ) ) = φ ( g ( x ) ) , ∀ g ∈ G , x ∈ X , \qquad g(\varphi(x)) = \varphi(g(x)),\forall g \in G, x \in X, g(φ(x))=φ(g(x)),gG,xX,
则 称 G 在 X 与 X ′ 上 的 作 用 等 价 。 则称G在X与X^{\prime}上的{\color{blue}作用等价}。 GXX
例4.2.18.线性空间同构不仅是集合之间的一一对应,还需要保持加法和数乘;同样作用之间的等价也需要保持集合上的结构–群作用。
定 理 4.2.19. 设 群 G 在 X 上 的 作 用 可 递 , x ∈ X 。 则 G 在 X 上 的 作 用 与 G 在 G / F x 上 {\color{blue}定理4.2.19.}设群G在X上的作用可递,x \in X。则G在X上的作用与G在G/F_x上 4.2.19.GXxXGXGG/Fx
的 左 平 移 作 用 等 价 。 的左平移作用等价。
推 论 4.2.20. O x = ∣ G / F x ∣ = [ G : F x ] . 从 而 ∣ O x ∣ ∣ ∣ G ∣ . {\color{blue}推论4.2.20.}O_x= |G/F_x| = [G:F_x].从而|O_x| {\color{green}|} |G|. 4.2.20.Ox=G/Fx=[G:Fx].OxG.
例 4.2.21 ( 等 价 的 作 用 ) . G 在 G 上 的 左 平 移 作 用 和 右 平 移 作 用 等 价 。 例4.2.21(等价的作用).G在G上的左平移作用和右平移作用等价。 4.2.21().GG
例 4.2.22. G 在 G 上 的 伴 随 作 用 : a d G : → S G , g → a d g . 例4.2.22.G在G上的伴随作用:\mathrm{ad}G: \to S_G, g \to \mathrm{ad} g. 4.2.22.GG:adG:SG,gadg.
定 义 4.2.23. 设 G 是 一 个 群 , g ∈ G . 在 伴 随 作 用 下 g 的 轨 道 称 为 以 g 为 代 表 的 共 轭 类 , 记 作 G g 。 g 的 迷 向 子 群 称 为 g 在 {\color{blue}定义4.2.23.}设G是一个群,g \in G.在伴随作用下g的轨道称为以g为代表的{\color{blue}共轭类},记作G_g。g的迷向子群称为g在 4.2.23.G,gG.gg,Gggg
G 中 的 中 心 化 子 , 记 作 C G ( g ) 或 C ( g ) . 称 K e r &ThickSpace; a d 为 中 心 , 记 作 C ( G ) . G中的{\color{blue}中心化子},记作C_G(g)或C(g).称\mathrm{Ker} \; \mathrm{ad}为{\color{blue}中心},记作C(G). G,CG(g)C(g).Kerad,C(G).
定 理 4.2.24. 1 ) C ( G ) 是 G 的 正 规 子 群 , 且 a d &ThickSpace; G 与 G / C ( G ) 同 构 。 {\color{blue}定理4.2.24.}1)C(G)是G的正规子群,且\mathrm{ad} \; G与G/C(G)同构。 4.2.24.1)C(G)GadGG/C(G)
2 ) G 的 共 轭 类 的 集 合 是 G 的 一 个 划 分 。 2)G的共轭类的集合是G的一个划分。 2)GG
3 ) 若 G 是 一 个 有 限 群 , g ∈ G , 则 ∣ C g ∣ = [ G : C ( g ) ] , 是 ∣ G ∣ 的 因 子 。 3)若G是一个有限群,g \in G,则|C_g| = [G: C(g)],是|G|的因子。 3)G,gG,Cg=[G:C(g)],G
4 ) h ∈ C ( G ) 当 且 仅 当 ∣ C h = 1 ∣ , 当 且 仅 当 h ∈ ∩ g ∈ G C ( g ) . 4)h \in C(G)当且仅当|C_h = 1|,当且仅当 h \in \cap_{g \in G}C(g). 4)hC(G)Ch=1,hgGC(g).
5 ) ( 轨 道 公 式 ) 设 x 1 , ⋯ &ThinSpace; , x n 是 有 限 群 G 的 所 有 共 轭 类 的 代 表 元 , 则 ∣ G ∣ = ∑ n ∣ G ∣ / ∣ C ( x i ) ∣ . 5)(轨道公式)设x_1,\cdots, x_n是有限群G的所有共轭类的代表元,则|G| = \sum_n|G|/|C(x_i)|. 5)()x1,,xnG,G=nG/C(xi).
例 4.2.5. 试 求 S n 的 共 轭 类 . 例4.2.5.试求S_n的共轭类. 4.2.5.Sn.

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值