滤波器基础03——Sallen-Key滤波器、多反馈滤波器与Bainter陷波器

滤波器基础系列博客,传送门:

滤波器基础01——滤波器的种类与特性

滤波器基础02——滤波器的传递函数与性能参数

滤波器基础03——Sallen-Key滤波器、多反馈滤波器与Bainter陷波器

滤波器基础04——全通滤波器

滤波器基础05——巴特沃斯、切比雪夫与贝塞尔滤波器

滤波器基础06——滤波器设计软件


前言

有源滤波器应用十分广泛,拓扑多种多样,但最流行的,性能最优异的基本就是以下要介绍的三种有源滤波器拓扑。


一. Sallen-Key滤波器

1.1 SK滤波器的通用拓扑和传递函数

Sallen-key是一种有源滤波器拓扑结构,由麻省理工学院林肯实验室的R. P. Sallen and E. L. Key 在1955年提出,因此被命名为Sallen-key滤波器,简称SK滤波器,其结构如下图所示。其中 Z 1 , Z 2 , Z 3 , Z 4 Z_1\text{,}Z_2\text{,}Z_3\text{,}Z_4 Z1Z2Z3Z4为复阻抗,它们可以为电容或者电阻。

这种滤波器拓扑是使用最广泛的滤波器拓扑之一。在这种结构中,由于运放被配置为放大器而非积分器,因此最大限度降低了滤波器对运放带宽的要求。

Z 1 , Z 2 Z_1\text{,}Z_2 Z1Z2中点电压为 X ( s ) X\left( s \right) X(s),有:
{ U i ( s ) − X ( s ) Z 1 = X ( s ) − U o ( s ) Z 4 + X ( s ) Z 2 + Z 3 X ( s ) = Z 2 + Z 3 Z 3 U o ( s ) \begin{cases} \frac{U_i\left( s \right) -X\left( s \right)}{Z_1}=\frac{X\left( s \right) -U_o\left( s \right)}{Z_4}+\frac{X\left( s \right)}{Z_2+Z_3}\\ X\left( s \right) =\frac{Z_2+Z_3}{Z_3}U_o\left( s \right)\\ \end{cases} {Z1Ui(s)X(s)=Z4X(s)Uo(s)+Z2+Z3X(s)X(s)=Z3Z2+Z3Uo(s)

⇒ H ( s ) = U o ( s ) U i ( s ) = Z 3 Z 4 Z 1 Z 2 + Z 1 Z 4 + Z 2 Z 4 + Z 3 Z 4 \Rightarrow H\left( s \right) =\frac{U_o\left( s \right)}{U_i\left( s \right)}=\frac{Z_3Z_4}{Z_1Z_2+Z_1Z_4+Z_2Z_4+Z_3Z_4} H(s)=Ui(s)Uo(s)=Z1Z2+Z1Z4+Z2Z4+Z3Z4Z3Z4

这就是SK滤波器的通用传递函数

1.2 二阶SK低通滤波器

将通用拓扑中的复阻抗用具体的电阻电容替代,得到如下电路。

其传递函数为:
H ( s ) = 1 1 + ( R 1 C 1 + R 2 C 1 ) s + R 1 R 2 C 1 C 2 s 2 H\left( s \right) =\frac{1}{1+\left( R_1C_1+R_2C_1 \right) s+R_1R_2C_1C_2s^2} H(s)=1+(R1C1+R2C1)s+R1R2C1C2s21
显然,这是一个二阶低通滤波器,可根据公式快速计算出此滤波器的特征频率,品质因数与截止频率,从而确定滤波器性能。
H ( j ω ) = 1 1 − R 1 R 2 C 1 C 2 ω 2 + j ( R 1 C 1 + R 2 C 1 ) ω H\left( j\omega \right) =\frac{1}{1-R_1R_2C_1C_2\omega ^2+j\left( R_1C_1+R_2C_1 \right) \omega} H(jω)=1R1R2C1C2ω2+j(R1C1+R2C1)ω1

A ( ω ) = 1 ( 1 − R 1 R 2 C 1 C 2 ω 2 ) 2 + ( R 1 C 1 + R 2 C 1 ) 2 ω 2 A\left( \omega \right) =\frac{1}{\sqrt{\left( 1-R_1R_2C_1C_2\omega ^2 \right) ^2+\left( R_1C_1+R_2C_1 \right) ^2\omega ^2}} A(ω)=(1R1R2C1C2ω2)2+(R1C1+R2C1)2ω2 1

截止频率处,幅值为 1 / 2 {{1}\Big/{\sqrt{2}}} 1/2 ,有:
A ( ω c ) = 1 ( 1 − R 1 R 2 C 1 C 2 ω c 2 ) 2 + ( R 1 C 1 + R 2 C 1 ) 2 ω c 2 = 1 2 A\left( \omega _c \right) =\frac{1}{\sqrt{\left( 1-R_1R_2C_1C_2{\omega _c}^2 \right) ^2+\left( R_1C_1+R_2C_1 \right) ^2{\omega _c}^2}}=\frac{1}{\sqrt{2}} A(ωc)=(1R1R2C1C2ωc2)2+(R1C1+R2C1)2ωc2 1=2 1

⇒ ( 1 − R 1 R 2 C 1 C 2 ω c 2 ) 2 + ( R 1 C 1 + R 2 C 1 ) 2 ω c 2 = 2 \Rightarrow \left( 1-R_1R_2C_1C_2{\omega _c}^2 \right) ^2+\left( R_1C_1+R_2C_1 \right) ^2{\omega _c}^2=2 (1R1R2C1C2ωc2)2+(R1C1+R2C1)2ωc2=2

x = ω c 2 x={\omega _c}^2 x=ωc2,有:
( 1 − R 1 R 2 C 1 C 2 x ) 2 + ( R 1 + R 2 ) 2 C 1 2 x − 2 = 0 \left( 1-R_1R_2C_1C_2x \right) ^2+\left( R_1+R_2 \right) ^2{C_1}^2x-2=0 (1R1R2C1C2x)2+(R1+R2)2C12x2=0

⇒ ( R 1 R 2 C 1 C 2 ) 2 x 2 + [ ( R 1 + R 2 ) 2 C 1 2 − 2 R 1 R 2 C 1 C 2 ] x − 1 = 0 \Rightarrow \left( R_1R_2C_1C_2 \right) ^2x^2+\left[ \left( R_1+R_2 \right) ^2{C_1}^2-2R_1R_2C_1C_2 \right] x-1=0 (R1R2C1C2)2x2+[(R1+R2)2C122R1R2C1C2]x1=0

根据一元二次方程求根公式 x = − b ± b 2 − 4 a c 2 a ,又 x > 0 ,有: \text{根据一元二次方程求根公式}x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\text{,又}x>0\text{,有:} 根据一元二次方程求根公式x=2ab±b24ac ,又x>0,有:

x = 2 R 1 R 2 C 2 − ( R 1 + R 2 ) 2 C 1 + ( R 1 + R 2 ) 4 C 1 2 − 4 R 1 R 2 C 1 C 2 ( R 1 + R 2 ) 2 + 8 ( R 1 R 2 C 2 ) 2 2 C 1 ( R 1 R 2 C 2 ) 2 x=\frac{2R_1R_2C_2-\left( R_1+R_2 \right) ^2C_1+\sqrt{\left( R_1+R_2 \right) ^4{C_1}^2-4R_1R_2C_1C_2\left( R_1+R_2 \right) ^2+8\left( R_1R_2C_2 \right) ^2}}{2C_1\left( R_1R_2C_2 \right) ^2} x=2C1(R1R2C2)22R1R2C2(R1+R2)2C1+(R1+R2)4C124R1R2C1C2(R1+R2)2+8(R1R2C2)2

⇒ ω c = 2 R 1 R 2 C 2 − ( R 1 + R 2 ) 2 C 1 + ( R 1 + R 2 ) 4 C 1 2 − 4 R 1 R 2 C 1 C 2 ( R 1 + R 2 ) 2 + 8 ( R 1 R 2 C 2 ) 2 2 C 1 ( R 1 R 2 C 2 ) 2 \Rightarrow \omega _c=\sqrt{\frac{2R_1R_2C_2-\left( R_1+R_2 \right) ^2C_1+\sqrt{\left( R_1+R_2 \right) ^4{C_1}^2-4R_1R_2C_1C_2\left( R_1+R_2 \right) ^2+8\left( R_1R_2C_2 \right) ^2}}{2C_1\left( R_1R_2C_2 \right) ^2}} ωc=2C1(R1R2C2)22R1R2C2(R1+R2)2C1+(R1+R2)4C124R1R2C1C2(R1+R2)2+8(R1R2C2)2

特征频率 ω 0 \omega _0 ω0为传递函数分母实部为0的点,有:
ω 0 = 1 R 1 R 2 C 1 C 2 \omega _0=\frac{1}{\sqrt{R_1R_2C_1C_2}} ω0=R1R2C1C2 1
品质因数Q为特征频率处幅值与直流幅值的比值,有:
Q = 1 n 1 ω 0 = R 1 R 2 C 1 C 2 R 1 C 1 + R 2 C 1 Q=\frac{1}{n_1\omega _0}=\frac{\sqrt{R_1R_2C_1C_2}}{R_1C_1+R_2C_1} Q=n1ω01=R1C1+R2C1R1R2C1C2

二阶SK低通滤波器的LTspice仿真电路与Bode图如下图所示。

1.3 二阶SK高通滤波器

调换电阻与电容的位置即可将低通滤波器变为高通滤波器,如下图所示:

其传递函数为:
H ( s ) = 1 1 + ( 1 R 1 C 1 + 1 R 1 C 2 ) 1 s + 1 R 1 R 2 C 1 C 2 1 s 2 = R 1 R 2 C 1 C 2 s 2 1 + ( R 2 C 1 + R 2 C 2 ) s + R 1 R 2 C 1 C 2 s 2 H\left( s \right) =\frac{1}{1+\left( \frac{1}{R_1C_1}+\frac{1}{R_1C_2} \right) \frac{1}{s}+\frac{1}{R_1R_2C_1C_2}\frac{1}{s^2}}=\frac{R_1R_2C_1C_2s^2}{1+\left( R_2C_1+R_2C_2 \right) s+R_1R_2C_1C_2s^2} H(s)=1+(R1C11+R1C21)s1+R1R2C1C21s211=1+(R2C1+R2C2)s+R1R2C1C2s2R1R2C1C2s2

1.4 二阶SK带通滤波器

Z 3 Z_3 Z3改为电阻和电容的并联,即可得到带宽滤波器,如下图所示。

有:
H ( s ) = 1 1 + R 1 + 1 s C 1 Z 3 + R 1 s C 1 Z 3 R 2 = Z 3 Z 3 + R 1 + 1 s C 1 + R 1 s 1 R 2 C 1 H\left( s \right) =\frac{1}{1+\frac{R_1+\frac{1}{sC_1}}{Z_3}+\frac{\frac{R_1}{sC_1}}{Z_3R_2}}=\frac{Z_3}{Z_3+R_1+\frac{1}{sC_1}+\frac{R_1}{s_1R_2C_1}} H(s)=1+Z3R1+sC11+Z3R2sC1R11=Z3+R1+sC11+s1R2C1R1Z3

又 Z 3 = 1 s C 2 × R 3 1 s C 2 + R 3 = R 3 1 + R 3 C 2 s ⇒ \text{又}Z_3=\frac{\frac{1}{sC_2}\times R_3}{\frac{1}{sC_2}+R_3}=\frac{R_3}{1+R_3C_2s}\Rightarrow Z3=sC21+R3sC21×R3=1+R3C2sR3

其传递函数为:
H ( s ) = R 2 R 3 C 1 R 1 + R 2 s 1 + R 1 R 2 C 1 + R 1 R 3 C 2 + R 2 R 3 C 1 + R 2 R 3 C 2 R 1 + R 2 s + R 1 R 2 R 3 C 1 C 2 R 1 + R 2 s 2 H\left( s \right) =\frac{\frac{R_2R_3C_1}{R_1+R_2}s}{1+\frac{R_1R_2C_1+R_1R_3C_2+R_2R_3C_1+R_2R_3C_2}{R_1+R_2}s+\frac{R_1R_2R_3C_1C_2}{R_1+R_2}s^2} H(s)=1+R1+R2R1R2C1+R1R3C2+R2R3C1+R2R3C2s+R1+R2R1R2R3C1C2s2R1+R2R2R3C1s

1.5 本章参考

滤波器设计教程 | 教育 | 亚德诺半导体 (analog.com) —— 6. Sallen-Key滤波器(MT-222)


二. 多反馈滤波器

2.1 多反馈滤波器的通用拓扑和传递函数

多反馈滤波器,Multi-feedback filter,简写为MFB滤波器,也称为多重反馈滤波器,有时称为Delyiannis Friend 滤波器。

多反馈滤波器是一种流行的滤波器结构,以运算放大器作为积分器,所以,相较SK滤波器,多反馈滤波器对运放的带宽要求更高。一般来说,采用多反馈滤波器拓扑,运放带宽需要是截止频率的100倍才能满足要求。

多反馈滤波器通用拓扑结构如下图所示。

显然,运放的输出到负输入有两条负反馈路径,这也是多反馈滤波器得名的原因。根据KVL与KCL有:

U i ( s ) − X ( s ) Z 1 = X ( s ) Z 2 + X ( s ) − U o ( s ) Z 3 + X ( s ) Z 4 \frac{U_i\left( s \right) -X\left( s \right)}{Z_1}=\frac{X\left( s \right)}{Z_2}+\frac{X\left( s \right) -U_o\left( s \right)}{Z_3}+\frac{X\left( s \right)}{Z_4} Z1Ui(s)X(s)=Z2X(s)+Z3X(s)Uo(s)+Z4X(s)

X ( s ) − 0 Z 4 = 0 − U o ( s ) Z 5 ⇒ X ( s ) = − U o ( s ) Z 4 Z 5 \frac{X\left( s \right) -0}{Z_4}=\frac{0-U_o\left( s \right)}{Z_5}\Rightarrow X\left( s \right) =-U_o\left( s \right) \frac{Z_4}{Z_5} Z4X(s)0=Z50Uo(s)X(s)=Uo(s)Z5Z4

将下式代入上式,有:
U i ( s ) + U o ( s ) Z 4 Z 5 Z 1 = − U o ( s ) Z 4 Z 2 Z 5 + − U o ( s ) Z 4 Z 5 − U o ( s ) Z 3 − U o ( s ) Z 5 \frac{U_i\left( s \right) +U_o\left( s \right) \frac{Z_4}{Z_5}}{Z_1}=-U_o\left( s \right) \frac{Z_4}{Z_2Z_5}+\frac{-U_o\left( s \right) \frac{Z_4}{Z_5}-U_o\left( s \right)}{Z_3}-\frac{U_o\left( s \right)}{Z_5} Z1Ui(s)+Uo(s)Z5Z4=Uo(s)Z2Z5Z4+Z3Uo(s)Z5Z4Uo(s)Z5Uo(s)

⇒ H ( s ) = U o ( s ) U i ( s ) = − 1 Z 1 Z 4 Z 1 Z 5 + Z 4 Z 2 Z 5 + Z 4 Z 3 Z 5 + 1 Z 3 + 1 Z 5 = − Z 2 Z 3 Z 5 ( Z 1 Z 2 + Z 1 Z 3 + Z 2 Z 3 ) Z 4 + Z 1 Z 2 Z 3 + Z 1 Z 2 Z 5 \Rightarrow H\left( s \right) =\frac{U_o\left( s \right)}{U_i\left( s \right)}=\frac{-\frac{1}{Z_1}}{\frac{Z_4}{Z_1Z_5}+\frac{Z_4}{Z_2Z_5}+\frac{Z_4}{Z_3Z_5}+\frac{1}{Z_3}+\frac{1}{Z_5}}=\frac{-Z_2Z_3Z_5}{\left( Z_1Z_2+Z_1Z_3+Z_2Z_3 \right) Z_4+Z_1Z_2Z_3+Z_1Z_2Z_5} H(s)=Ui(s)Uo(s)=Z1Z5Z4+Z2Z5Z4+Z3Z5Z4+Z31+Z51Z11=(Z1Z2+Z1Z3+Z2Z3)Z4+Z1Z2Z3+Z1Z2Z5Z2Z3Z5

这就是多反馈滤波器的通用传递函数。

2.2 二阶多反馈低通滤波器

将通用拓扑中的复阻抗用具体的电阻电容替代,可构建如下图所示的二阶多反馈低通滤波器。

其传递函数为:
H ( s ) = − R 3 R 1 1 + ( R 4 C 5 + R 3 C 5 + R 3 C 5 R 4 R 1 ) s + R 3 R 4 C 2 C 5 s 2 H\left( s \right) =\frac{-\frac{R_3}{R_1}}{1+\left( R_4C_5+R_3C_5+\frac{R_3C_5R_4}{R_1} \right) s+R_3R_4C_2C_5s^2} H(s)=1+(R4C5+R3C5+R1R3C5R4)s+R3R4C2C5s2R1R3
可见,此滤波器是自带增益的,通带增益 = R 3 / R 1 {{R_3}\Big/{R_1}} R3/R1,一般来说,可保持这两个电阻相等,这时增益为1。另外,注意信号相位会被反转180°。

二阶多反馈巴特沃斯低通滤波器的LTspice仿真电路与Bode图如下图所示。

滤波器基础03-Sallen-Key滤波器、多反馈滤波器与Bainter陷波器-16

2.3 二阶多反馈高通滤波器

将上述滤波器的电容换成电阻,电阻换成电容即可将低通滤波器转换为高通滤波器,电路如下图所示。

其传递函数为:
H ( s ) = − R 2 R 5 C 1 C 4 s 2 1 + ( R 2 C 1 + R 2 C 3 + R 2 C 4 ) s + R 2 R 5 C 3 C 4 s 2 H\left( s \right) =\frac{-R_2R_5C_1C_4s^2}{1+\left( R_2C_1+R_2C_3+R_2C_4 \right) s+R_2R_5C_3C_4s^2} H(s)=1+(R2C1+R2C3+R2C4)s+R2R5C3C4s2R2R5C1C4s2

当 s → ∞ 时, H ( s ) = − C 1 C 3 \text{当}s\rightarrow \infty \text{时,}H\left( s \right) =-\frac{C_1}{C_3} s时,H(s)=C3C1

2.4 二阶多反馈带通滤波器

将高通滤波器的电容 C 1 C_1 C1改为电阻 R 1 R_1 R1,即可得到带通滤波器,如下图所示。

其传递函数为:
H ( s ) = − R 2 R 5 C 4 R 1 + R 2 s 1 + R 1 R 2 C 3 + R 1 R 2 C 4 R 1 + R 2 s + R 1 R 2 R 5 C 3 C 4 R 1 + R 2 s 2 H\left( s \right) =\frac{-\frac{R_2R_5C_4}{R_1+R_2}s}{1+\frac{R_1R_2C_3+R_1R_2C_4}{R_1+R_2}s+\frac{R_1R_2R_5C_3C_4}{R_1+R_2}s^2} H(s)=1+R1+R2R1R2C3+R1R2C4s+R1+R2R1R2R5C3C4s2R1+R2R2R5C4s

2.5 本章参考

同1.5节,滤波器设计教程 | 教育 | 亚德诺半导体 (analog.com) —— 7. 多反馈滤波器(MT-220)


三. Bainter陷波器

3.1 SK滤波器不适合构建带阻滤波器

虽然SK滤波器广泛地应用于低通和高通滤波器,但其对于实现带阻滤波器来说却有着几个严重的缺点。由于组件值对中心频率 f 0 f_0 f0和 Q 值会有影响,因此SK不容易调谐。而且,当试图产生理想的陷波滤波器特性时,开环输出电阻会产生干扰。此外由于组件干扰的原因还导致 f 0 f_0 f0不容易调整。由于这些缺点,SK拓扑不适合构建带阻滤波器

下图是6阶SK陷波器的幅频特性曲线。

显然,阻带内不平整,有两个凸起,衰减也并不大。

3.2 多反馈滤波器不适合构建带阻滤波器

尽管多反馈滤波器拓扑广泛地应用于低通、高通和带通滤波器,但其对于实现带阻滤波器而言却存在着几个严重的不足。与Sallen-Key实现方案相比,转移函数对运放参数的依存性更大。而且,由于放大器在高频条件下的开环增益受限,因此也难以生成高Q值的高频滤波器节。由于这些缺点,多反馈拓扑不适合构建带阻滤波器

下图是6阶多反馈陷波器的幅频特性曲线。

显然,阻带两侧的通带有凸起,阻带衰减也不大。

3.2 Bainter陷波器拓扑与特性

Bainter陷波器是一种适合构建带阻滤波器的拓扑,二阶Bainter陷波器拓扑如下图所示。

上图所示的Bainter陷波器拓扑具有三个简单的放大器电路模块和两个反馈环路。在运放A1的输出端上提供频率响应的是一个高通滤波器,在运放A2的输出端上提供频率响应的是一个低通滤波器,而运放A3则通过在其输出端上提供完整的陷波函数起一个求和器的作用。

Bainter陷波器具有多项极具吸引力的特性。陷波器的品质因数Q取决于放大器的增益,而不是组件匹配。因此,陷波深度不易受温度漂移或者老化的影响。尽管滤波器的特征频率有可能发生偏移,但是陷波深度则保持相对恒定。此外,该滤波器的组件敏感性非常低,约为0.5。

下图是6阶Bainter陷波器的幅频特性曲线。

显然,通带平坦,阻带衰减足够大,也无凸起,是接近理想陷波器特性的曲线。

毫无疑问,Bainter陷波器是一种用于构建带阻滤波器的推荐拓扑。

二阶Bainter陷波器的LTspice仿真电路和Bode图如下图所示。

滤波器基础03-Sallen-Key滤波器、多反馈滤波器与Bainter陷波器-17

3.4 本章参考

滤波器设计教程 | 教育 | 亚德诺半导体 (analog.com) —— 13. Bainter陷波滤波器(MT-203)

《带阻滤波器和Bainter拓扑》,作者Bonnie C.Baker,TI模拟应用期刊,2015年第一季度。


四. LTspice仿真工程分享

滤波器基础03——Sallen-Key滤波器、多反馈滤波器与Bainter陷波器的LTspice仿真工程。

欢迎大家关注我的公众号:徐晓康的博客,回复以下代码获取。

8624

建议复制过去不会码错字!


五. SK滤波器与多反馈滤波器的使用总结

对比二阶SK低通滤波器与二阶多反馈低通滤波器:

  1. 增益为1时,SK低通滤波器只需4个元件,而多反馈低通滤波器需要5个。

  2. SK低通滤波器是一个缓冲器,而多反馈低通滤波器是一个反相器。

  3. SK低通滤波器的增益精确为1,多反馈低通滤波器的增益 = R 3 / R 1 {{R_3}\Big/{R_1}} R3/R1,所以其精度取决于这两个电阻的精度。

  4. SK低通滤波器的噪声增益为1,而因为反相作用,多反馈低通滤波器的噪声增益 = 1 + 实际增益1。因此,对于同规格的元器件来说,多反馈滤波器的噪声要大一点。

  5. 综上,如果要设计增益为1的低通滤波器,SK滤波器的性能好于多反馈滤波器。

  6. 如果需要加增益,那么SK滤波器的元件数量优势将不复存在。

其它不同点:

  1. 一般不使用多反馈构建高通滤波器,因为电容对高频短路,会导致输入直连运放输出,造成冲突。

  2. 一般不使用SK构建带通滤波器,因为带通滤波器需要高Q值,而SK拓扑难以实现高Q值,所以,一般使用多反馈带通滤波器。

参考:滤波101: Sallen-Key与多重反馈_哔哩哔哩_bilibili


徐晓康的博客持续分享高质量硬件、FPGA与嵌入式知识,软件,工具等内容,欢迎大家关注。

### 回答1: 二阶SK有源滤波器是一种电子滤波器,通过使用有源件(如运放)来实现滤波功能。它具有二阶滤波器的特点,可以实现更陡的滤波斜率和更好的频率响应。 有源滤波器可以分为主动滤波器和被动滤波器。主动滤波器使用有源件(如运放)来增益输入信号,从而提高滤波器性能。被动滤波器则是指使用被动元件(如电容、电感、电阻等)实现滤波功能的滤波器。 二阶SK有源滤波器的原理是将有源件(如运放)连接到被动元件(如电容、电感、电阻等)上,形成一个反馈回路。具体来说,它由一个运放作为放大,并搭配一些电容和电阻来达到滤波的目的。 二阶SK有源滤波器的特点之一是它可以实现更陡的滤波斜率。滤波斜率指的是滤波器在截止频率附近对信号的衰减程度。二阶SK有源滤波器通常可以实现12dB/oct、24dB/oct等比较陡的衰减斜率。 另外,二阶SK有源滤波器还具有更好的频率响应特性。频率响应指的是滤波器在不同频率下的增益和相位变化。通过调整滤波器的参数,可以使其在所需的频率范围内具有较为平坦的频率响应,从而实现对特定频率的信号衰减或增益。 总之,二阶SK有源滤波器是一种广泛应用于电子设备和音频系统中的滤波器。它通过使用有源件和被动元件的组合,可以实现更好的滤波效果,包括更陡的滤波斜率和更好的频率响应特性。 ### 回答2: 二阶SK有源滤波器是一种常见的滤波器结构,它由一个有源放大和一些被称为电容和电感的被动元件组成。 这种滤波器可以实现对输入信号进行频率选择性的处理。它有两个输入端,一个是输入信号端,另一个是参考信号端。有源放大通过放大输入信号并参考信号进行混合,将结果返回到输出端。电容和电感元件则用来形成特定的频率响应。 二阶SK有源滤波器具有以下几个重要特点: 1. 高增益:由于有源放大的存在,使得滤波器具有较高的增益,可以放大输入信号。 2. 无源衰减:有源放大可以弥补电容和电感元件引起的信号衰减,使得输出信号保持相对不变。 3. 增加稳定性:有源放大可以提供反馈,增加系统的稳定性,降低幅频特性的波动。 4. 调节功能:通过调节参考信号端的输入,可以改变滤波器的频率响应,实现不同频率的信号过滤。 总之,二阶SK有源滤波器是一种常用的滤波器结构,具有高增益、无源衰减、增加稳定性和调节功能的特点。它在信号处理和通信系统中有着广泛的应用。 ### 回答3: 二阶有源滤波器是一种电子滤波器,它由二阶滤波电路和一个有源放大组成。 二阶滤波电路通常由电容和电感组成,它们可以产生差分输出信号的相位差,改变输入信号的幅度和相位。 而有源放大是一个有放大功能的电子元件,能够将输入信号放大,并通过反馈电路将放大的信号再次注入到滤波电路中,使得滤波器的频率响应更加理想。 二阶有源滤波器能够实现多种滤波功能,包括低通滤波、高通滤波和带通滤波等。它在音频处理、信号处理和通信系统等领域有着广泛的应用。 一阶滤波器相比,二阶有源滤波器具有更高的阶数和更好的性能。它可以实现更为陡峭的滤波特性,有更高的选择性和更好的抑制杂散频率的能力。 二阶有源滤波器的设计和调节需要考虑电容和电感元件的选取和参数调整,以及有源放大的增益和频率响应等因素。合理的设计和调节可以使得滤波器的性能达到最佳状态,满足特定的需求。 总之,二阶有源滤波器是一种功能强大且性能优越的滤波器,具有广泛的应用前景。通过合理的设计和调节,它可以实现各种滤波功能,满足不同领域的需求。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值