大家好,我是微学AI,今天给大家介绍一下深度学习实战78-基于LSTM+CNN+注意力机制Attention模型实现某城市的空气质量分析与预测。 在现代城市化进程中,空气质量问题日益凸显,成为影响居民健康和城市可持续发展的重要因素。为了更有效地管理和改善空气质量,本研究提出了一种结合长短期记忆网络(LSTM)、卷积神经网络(CNN)和注意力机制(Attention)的深度学习模型,用于城市空气质量的分析与预测。
文章目录
一、模型概述
1.1 项目背景介绍
在深度学习领域,长短期记忆网络(Long Short-Term Memory, LSTM)是一种特殊的递归神经网络(Recurrent Neural Network, RNN),专为解决序列数据处理中的长期依赖问题而设计。LSTM的创新之处在于其引入了“门”机制,包括输入门、遗忘门和输出门,这使得模型能够自主控制信息的流动,从而有效地避免了传统RNN中常见的梯度消失或梯度爆炸问题。
LSTM+CNN+注意力机制