大家好,我是微学AI,今天给大家介绍一下大模型的实践应用36基于AI Agent和通义千问大模型,支持多轮问答的智能问数和数据分析的应用场景。

文章目录
一、整体框架
功能概述
(一)深度解析多轮对话在数据查询需求确定中的关键作用
这个AI Agent的核心功能是通过多轮对话精准把握用户的数据查询需求,这一过程如同一场细致的需求挖掘之旅。在现代商业环境中,数据量庞大且复杂,例如一家大型电商企业,每天都会产生海量的交易记录、用户信息等数据。不同部门的人员对数据有着不同的需求,市场部门可能关注不同地区的销售趋势以制定营销策略,财务部门可能着重于成本和利润相关指标来进行财务分析。多轮对话机制就像是一把精准的钥匙,逐步开启用户内心深处对于数据查询的真正需求之门。
(二)明确查询相关要素的重要性
查询表的确定 查询表是数据查询的基础,它就像一座大厦的基石。以电商场景为例,如果用户想要了解产品的销售情况,可能涉及到“销售记录表”,若要深入了解用户信息,则可能需要查询“用户信息表”。准确确定查询表是获取正确数据的首要步骤,否则就如同在茫茫数据海洋中迷失方向,无法找到所需的宝藏。
指标的明确 指标是数据的灵魂,反映了数据的关键特征。继续以电商为例,对于销售数据而言,“销售额”“销售量”“客单价”等都是重要的指标。不同的指标能为用户提供不同维度的信息,如销售额可以反映整体销售规模,销售量能体现产品的受欢迎程度,客单价则有助于分析用户的消费能力和产品的价值定位。
展示形式的选择 结果的展示形式直接影响用户对数据的理解和利用效率。如果用户是数据分析师,可能更倾向于以表格形式获取详细的数据,方便进行进一步的统计分析;而如果是业务部门的普通员工,或许更希望得到简洁明了的文本描述,能够快速获取关键

订阅专栏 解锁全文
1229

被折叠的 条评论
为什么被折叠?



