Pandas数据分析(十年期国债收益率 与 十年期国债期货价格的相关性)

一、Pandas数据类型介绍

Pandas基于numpy实现。与numpy相比,numpy更关注数据的组织,而pandas则更关注数据的表达和索引

Pandas包括两种数据类型:SeriesDataFrame

其中,Series是具有相同索引的一组数据的表示。而DataFrame是具有相同索引的多组数据的表示,各组数据具有不同的含义。

Series可通过列表、ndarray等数据来创建,可使用index、value来索引其中的值。
DataFrame可通过列表、ndarray、字典等数据来创建,可通过index、columns、value来索引其中的值。

#Series类型创建
dat = pd.Series(np.arange(5)+1)
print(dat)

0    1
1    2
2    3
3    4
4    5
dtype: int32
# DataFrame类型创建
dl = {
   '城市':['北京','上海','广州','深圳','沈阳'],
      '环比':[101.5, 101.2, 101.3, 102.0, 100.1],
      '同比':[120.7
我们使用机器学习方法来检查国债限利差其他金融市场宏观经济变量相对于概率回归预测美国经济衰退的能力。 特别是,我们提出了一种新策略,用于对用低频宏观/金融面板数据训练的分类器进行交叉验证,并将结果​​从标准 k 折交叉验证中获得的结果进行比较。 现有文献一致,我们发现,在时间序列设置中,来自 k 折的预测准确性估计存在乐观偏差,而消除数据“偷看”的交叉验证策略会产生较低且可能更现实的预测准确性估计. 更引人注目的是,我们还记录了概率的秩反转、随机森林、XGBoost、LightGBM、神经网络支持向量机分类器在两种交叉验证方法中的预测性能。 也就是说,虽然 k 折交叉验证表明树方法的预测准确性优于神经网络的预测准确性,而神经网络又优于概率回归的预测准确性,但我们提出的更保守的交叉验证策略表明恰恰相反,并且至少在当前问题的背景下,概率回归应该优于机器学习方法。 后一个结果越来越多的文献形成鲜明对比,这些文献表明机器学习方法优于许多替代分类算法,我们讨论了我们结果的一些可能原因。 我们还讨论了使用 Cochrane 的 Q McNemar 的测试对机器学习分类器进行统计推断的技术; 并使用 SHapley Additive exPlanations (SHAP) 框架分解美国经济衰退预测并分析跨商业周的特征重要性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值