要计算如下的双重积分:
∬ D e − ( x 2 + y 2 ) d x d y \iint_D e^{-(x^2+y^2)}\,dx\,dy ∬De−(x2+y2)dxdy
其中,区域 D D D是单位圆,定义为 x 2 + y 2 ≤ 1 x^2+y^2\leq1 x2+y2≤1。
求解步骤
-
将积分转换为极坐标
在极坐标中,我们有:
x = r cos θ , y = r sin θ x=r\cos\theta,\quad y=r\sin\theta x=rcosθ,y=rsinθ
因此, x 2 + y 2 = r 2 x^2+y^2=r^2 x2+y2=r2,并且面积元素 d x d y dx\,dy dxdy转换为 r d r d θ r\,dr\,d\theta rdrdθ。于是积分可以写成:
∬ D e − ( x 2 + y 2 ) d x d y = ∫ 0 2 π ∫ 0 1 e − r 2 ⋅ r d r d θ \iint_D e^{-(x^2+y^2)}\,dx\,dy=\int_0^{2\pi}\int_0^1 e^{-r^2}\cdot r\,dr\,d\theta ∬De−(x2+y2)dxdy=∫02π∫01e−r2⋅rdrdθ -
对 r r r积分
现在我们先对 r r r积分:
∫ 0 1 e − r 2 ⋅ r d r \int_0^1 e^{-r^2}\cdot r\,dr ∫01e−r2⋅rdr
令 u = r 2 u=r^2 u=r2,则 d u = 2 r d r du=2r\,dr du=2rdr,因此 r d r = 1 2 d u r\,dr=\frac{1}{2}\,du rdr=21du。当 r = 0 r=0 r=0时, u = 0 u=0 u=0;当 r = 1 r=1 r=1时, u = 1 u=1 u=1。
于是积分变为:
∫ 0 1 e − r 2 ⋅ r d r = ∫ 0 1 e − u ⋅ 1 2 d u = 1 2 ∫ 0 1 e − u d u \int_0^1 e^{-r^2}\cdot r\,dr=\int_0^1 e^{-u}\cdot\frac{1}{2}\,du=\frac{1}{2}\int_0^1 e^{-u}\,du ∫01e−r2⋅rdr=∫01e−u⋅21du=21∫01e−udu -
计算 u u u的积分
计算 ∫ 0 1 e − u d u \int_0^1 e^{-u}\,du ∫01e−udu:
∫ 0 1 e − u d u = [ − e − u ] 0 1 = − ( e − 1 − 1 ) = 1 − 1 e \int_0^1 e^{-u}\,du=\left[-e^{-u}\right]_0^1=-(e^{-1}-1)=1-\frac{1}{e} ∫01e−udu=[−e−u]01=−(e−1−1)=1−e1因此:
∫ 0 1 e − r 2 ⋅ r d r = 1 2 ( 1 − 1 e ) \int_0^1 e^{-r^2}\cdot r\,dr=\frac{1}{2}\left(1-\frac{1}{e}\right) ∫01e−r2⋅rdr=21(1−e1) -
对 θ \theta θ积分
现在对 θ \theta θ从 0 0 0到 2 π 2\pi 2π积分:
∫ 0 2 π ∫ 0 1 e − r 2 ⋅ r d r d θ = ∫ 0 2 π 1 2 ( 1 − 1 e ) d θ \int_0^{2\pi}\int_0^1 e^{-r^2}\cdot r\,dr\,d\theta=\int_0^{2\pi}\frac{1}{2}\left(1-\frac{1}{e}\right)\,d\theta ∫02π∫01e−r2⋅rdrdθ=∫02π21(1−e1)dθ因为 1 2 ( 1 − 1 e ) \frac{1}{2}\left(1-\frac{1}{e}\right) 21(1−e1)是常数,可以提到积分号外,得到:
= 1 2 ( 1 − 1 e ) ∫ 0 2 π d θ = 1 2 ( 1 − 1 e ) ⋅ 2 π =\frac{1}{2}\left(1-\frac{1}{e}\right)\int_0^{2\pi}d\theta=\frac{1}{2}\left(1-\frac{1}{e}\right)\cdot2\pi =21(1−e1)∫02πdθ=21(1−e1)⋅2π -
计算结果
= π ( 1 − 1 e ) =\pi\left(1-\frac{1}{e}\right) =π(1−e1)
最终答案
∬ D e − ( x 2 + y 2 ) d x d y = π ( 1 − 1 e ) \iint_D e^{-(x^2+y^2)}\,dx\,dy=\pi\left(1-\frac{1}{e}\right) ∬De−(x2+y2)dxdy=π(1−e1)
MATLAB代码
在 MATLAB 中,我们可以使用数值积分的方式或者直接使用符号积分计算这个积分。以下是使用符号计算的代码示例:
syms r theta % 定义符号变量
% 定义积分表达式
f = exp(-r^2) * r;
% 先对 r 从 0 到 1 积分
inner_integral = int(f, r, 0, 1);
% 再对 theta 从 0 到 2*pi 积分
result = int(inner_integral, theta, 0, 2*pi);
% 显示结果
disp(result);
syms r theta
定义极坐标的符号变量。f = exp(-r^2) * r
定义被积函数 ( e{-r2} \cdot r )。int(f, r, 0, 1)
计算内层积分,对 ( r ) 从 0 到 1 积分。int(inner_integral, theta, 0, 2*pi)
计算外层积分,对 ( \theta ) 从 0 到 ( 2\pi ) 积分。disp(result)
输出最终结果。