单位圆的双重积分极坐标计算

在这里插入图片描述

要计算如下的双重积分:

∬ D e − ( x 2 + y 2 )   d x   d y \iint_D e^{-(x^2+y^2)}\,dx\,dy De(x2+y2)dxdy

其中,区域 D D D是单位圆,定义为 x 2 + y 2 ≤ 1 x^2+y^2\leq1 x2+y21

求解步骤

  1. 将积分转换为极坐标

    在极坐标中,我们有:
    x = r cos ⁡ θ , y = r sin ⁡ θ x=r\cos\theta,\quad y=r\sin\theta x=rcosθ,y=rsinθ
    因此, x 2 + y 2 = r 2 x^2+y^2=r^2 x2+y2=r2,并且面积元素 d x   d y dx\,dy dxdy转换为 r   d r   d θ r\,dr\,d\theta rdrdθ

    于是积分可以写成:
    ∬ D e − ( x 2 + y 2 )   d x   d y = ∫ 0 2 π ∫ 0 1 e − r 2 ⋅ r   d r   d θ \iint_D e^{-(x^2+y^2)}\,dx\,dy=\int_0^{2\pi}\int_0^1 e^{-r^2}\cdot r\,dr\,d\theta De(x2+y2)dxdy=02π01er2rdrdθ

  2. r r r积分

    现在我们先对 r r r积分:
    ∫ 0 1 e − r 2 ⋅ r   d r \int_0^1 e^{-r^2}\cdot r\,dr 01er2rdr
    u = r 2 u=r^2 u=r2,则 d u = 2 r   d r du=2r\,dr du=2rdr,因此 r   d r = 1 2   d u r\,dr=\frac{1}{2}\,du rdr=21du

    r = 0 r=0 r=0时, u = 0 u=0 u=0;当 r = 1 r=1 r=1时, u = 1 u=1 u=1

    于是积分变为:
    ∫ 0 1 e − r 2 ⋅ r   d r = ∫ 0 1 e − u ⋅ 1 2   d u = 1 2 ∫ 0 1 e − u   d u \int_0^1 e^{-r^2}\cdot r\,dr=\int_0^1 e^{-u}\cdot\frac{1}{2}\,du=\frac{1}{2}\int_0^1 e^{-u}\,du 01er2rdr=01eu21du=2101eudu

  3. 计算 u u u的积分

    计算 ∫ 0 1 e − u   d u \int_0^1 e^{-u}\,du 01eudu
    ∫ 0 1 e − u   d u = [ − e − u ] 0 1 = − ( e − 1 − 1 ) = 1 − 1 e \int_0^1 e^{-u}\,du=\left[-e^{-u}\right]_0^1=-(e^{-1}-1)=1-\frac{1}{e} 01eudu=[eu]01=(e11)=1e1

    因此:
    ∫ 0 1 e − r 2 ⋅ r   d r = 1 2 ( 1 − 1 e ) \int_0^1 e^{-r^2}\cdot r\,dr=\frac{1}{2}\left(1-\frac{1}{e}\right) 01er2rdr=21(1e1)

  4. θ \theta θ积分

    现在对 θ \theta θ 0 0 0 2 π 2\pi 2π积分:
    ∫ 0 2 π ∫ 0 1 e − r 2 ⋅ r   d r   d θ = ∫ 0 2 π 1 2 ( 1 − 1 e )   d θ \int_0^{2\pi}\int_0^1 e^{-r^2}\cdot r\,dr\,d\theta=\int_0^{2\pi}\frac{1}{2}\left(1-\frac{1}{e}\right)\,d\theta 02π01er2rdrdθ=02π21(1e1)dθ

    因为 1 2 ( 1 − 1 e ) \frac{1}{2}\left(1-\frac{1}{e}\right) 21(1e1)是常数,可以提到积分号外,得到:
    = 1 2 ( 1 − 1 e ) ∫ 0 2 π d θ = 1 2 ( 1 − 1 e ) ⋅ 2 π =\frac{1}{2}\left(1-\frac{1}{e}\right)\int_0^{2\pi}d\theta=\frac{1}{2}\left(1-\frac{1}{e}\right)\cdot2\pi =21(1e1)02πdθ=21(1e1)2π

  5. 计算结果

    = π ( 1 − 1 e ) =\pi\left(1-\frac{1}{e}\right) =π(1e1)

最终答案

∬ D e − ( x 2 + y 2 )   d x   d y = π ( 1 − 1 e ) \iint_D e^{-(x^2+y^2)}\,dx\,dy=\pi\left(1-\frac{1}{e}\right) De(x2+y2)dxdy=π(1e1)

MATLAB代码

在 MATLAB 中,我们可以使用数值积分的方式或者直接使用符号积分计算这个积分。以下是使用符号计算的代码示例:

syms r theta  % 定义符号变量

% 定义积分表达式
f = exp(-r^2) * r;

% 先对 r 从 0 到 1 积分
inner_integral = int(f, r, 0, 1);

% 再对 theta 从 0 到 2*pi 积分
result = int(inner_integral, theta, 0, 2*pi);

% 显示结果
disp(result);
  1. syms r theta 定义极坐标的符号变量。
  2. f = exp(-r^2) * r 定义被积函数 ( e{-r2} \cdot r )。
  3. int(f, r, 0, 1) 计算内层积分,对 ( r ) 从 0 到 1 积分。
  4. int(inner_integral, theta, 0, 2*pi) 计算外层积分,对 ( \theta ) 从 0 到 ( 2\pi ) 积分。
  5. disp(result) 输出最终结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱代码的小黄人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值