文章目录
2020
多传感器融合的高精度无缝定位模型与方法研究【D】
摘要:室内外无缝定位信息是关系到国防安全、经济发展、社会民生的重要数据基础,发挥着重要的支撑作用,在国内外得到极大的重视和发展。然而,针对城市复杂环境以及室内等 GNSS 盲环境的高精度无缝定位技术仍然存在着定位模型与方法研究不足的情况。因此,本文围绕室内外无缝定位主题,开展了基于 GNSS、UWB、INS 和视觉等传感器融合的室内外定位模型、方法研究,形成了以下创新成果:
(1)针对定位盲环境或者应急情况下存在定位基准缺失和破坏等问题,提出了一种基于 UWB/GNSS 技术的覆盖区域、现场和室内的三级室内外无缝定位基准构建方法,重点研究了基于 UWB 自组网定位基准构建方法,解决了 GNSS室外定位基准向室内传递问题,实现了 0.35m 量级定位精度的 UWB 室内定位基站网络自动构建,可以保障定位盲环境且兼顾应急情况下的室内外定位基准需求。
(2)针对高楼林立街道、立体交通、长距离隧道、树洞街道等复杂的城市环境对城市高精度、高连续和高可靠性导航定位的挑战,提出了一种零速约束的GNSS/INS/Odometer 紧组合定位模型,通过 GNSS 抑制 INS 设备的误差漂移,利用 INS 辅助提高 GNSS 模糊度解算成功率,通过 Odometer 辅助解决 GNSS 长时间失锁时 INS 定位发散的问题,通过紧组合模型能够充分发挥三者互相补充的优势,实现在上述场景下高精度定位。结果表明除了长隧道环境在 2 分钟内,可以保持优于 2 米的定位精度外,其他场景基本可以实现 0.1 米的定位精度。
(3)针对 UWB 测距受到室内非视距、多路径等影响测距和定位精度等情况,首先,研究了基于 RBF 神经网络算法的 UWB 测距误差改正模型,实现了UWB 室内测距精度优于 0.08m;研究分析了基于 TOA 原理的 UWB 定位模型,并在此基础上提出了基于改进抗差 EKF 的 UWB 室内定位模型,根据预测残差调整增益矩阵的大小,减弱或者消除了粗差对状态向量的影响。该方法平面定位中误差为 0.13m,对比基于最小二乘和 EKF 算法,分别提高了 88.98%和 53.57%。
(4)提出了一种 UWB、PDR 和地图融合高精度室内定位模型,可以通过UWB 为 PDR 定位提供空间基准、抑制 PDR 定位精度发散;利用 PDR 提高 UWB的定位频率、解决 UWB 信号覆盖差或者无覆盖区域的定位问题;且通过室内地图帮助抑制 PDR 航向角发散,以及定位结果发散等问题,相互取长补短,实现具备绝对定位基准、高频率、高精度室内定位。
(5)针对非视距环境下 UWB 室内高精度定位问题,提出了一种基于 CKF算法的 UWB/INS 融合定位模型,在室内非视距环境下定位,可以消除由于 UWB信号受到遮挡而产生的多路径和非视距效应,而且可以增加定位结果的高频姿态信息。当 IMU 积分数据的误差增大时,通过 UWB 定位数据可以对 INS 定位结果进行约束。
(6) 针对单目视觉 SLAM 存在着尺度漂移、由于环境因素影响频繁初始化,导致定位不连续等问题,提出了一种顾及尺度因子的 UWB/视觉融合定位模型,通过 UWB 与视觉的融合,可以充分发挥二者之间的互补特性,解决视觉初始化、尺度模糊和绝对空间基准等问题,提高 UWB 定位精度和定位频率以及减少基站的数量。该模型可以可靠地在纹理稀疏或者光线频繁变化室内环境实现0.2m 量级的定位精度。
(7)提出了一种编码图形辅助的单像室内定位模型,可以以单幅影像为基础,通过编码图形物方点、像方点和投影中心共线的原理,从该影像所覆盖范围内的编码图形的已知地面坐标和相应点的像坐标量测值出发,解算出摄像机在摄影时刻所处的位置。计算过程中涉及到的编码影像、编码图形、编码图形的像方和物方坐标均可以通过计算机自动识别和获取。另外,通过 Tukey 权因子模型,可以检测编码图形像方坐标存在的误差,并根据观测值残差大小调整参与计算的权重,进而减弱或者抑制观测值误差对定位结果的影响,实现优于 0.1 米量级定位精度。
本文提出的理论模型和方法的可行性、可靠性和定位精度经过了试验验证,相关的模型和方法可以用于室内外行人、车辆等高精度定位。
2023
面向室内外环境下无人车自主导航系统研究【M】
摘要: 无人车已经成为目前移动机器人的研究热点,并在智能巡检、农业生产和安全出行等方面发挥着越来越大的优势。自主导航是实现无人车的自主化和智能化的关键技术之一,但目前无人车的自主导航多是在室内或室外单一环境中进行,无法适用于室内外不同环境。本文通过对无人车定位与建图、可行驶区域检测与分层代价地图、路径规划等三个方面的研究,设计并自主搭建了一种面向室内外不同环境下的无人车自主导航系统,有效解决了室内外不同环境下无人车的自主导航问题。本文的主要研究如下:
(1)针对室外长距离建图会出现累计误差,及室内因无 GPS 而产生的定位不精确的问题,本文提出了一种基于多传感器融合的定位与建图方法。首先进行LiDAR 与 IMU 联合标定,实现坐标系的统一;然后在 LIO-SAM 算法基础上增加 Scan Context 空间描述子的回环检测方法,并使用 GTSAM 优化构建的多因子图模型,完成室内外环境下三维点云地图构建与定位任务;最后采集三圈数据,使用 EVO 工具对前后圈的轨迹进行分析,使得绝对误差减少了 50.59%,相对误差减少了 94.34%,同时对比改进前后算法生成的轨迹,表明该方法能够减少室外累计误差和室内定位不精确的问题。
(2)针对室内外三维点云地图无法构建可行驶区域和语义信息单一的问题,本文提出了室内外可行驶区域检测与分层代价地图更新与创建方法。首先对三维点云地图进行同心区域划分、区域平面拟合和地面似然估计,完成地面点云分割;然后通过 CloudCompare 工具去除分割地面后点云地图的动态噪点,并使用半径滤波与直通滤波将处理后的三维点云地图投影成二维栅格地图,完成可行驶区域的构建;最后结合静态层、障碍物层、膨胀层生成主代价地图,解决导航过程中单层地图语义信息单一的问题。
(3)针对室外大场景与室内长走廊导航路径搜索内存资源消耗大以及路径曲率大的问题,本文提出了基于动态加权的平滑 JPS 全局路径算法和基于 DWA局部路径规划算法。首先在传统 JPS 算法基础上,增加动态加权启发函数并进行三阶贝塞尔曲线平滑处理,加速路径搜索并减少内存占用,并使用 DWA 算法实现室内外静态与动态避障;然后使用 MATLAB 对改进后的算法进行仿真分析,结果表明改进后的算法搜索时间更少,规划出的路径更加平滑;最后将改进后的算法移植到 Move_Base 导航框架上进行实车试验,结果表明无人车能够实现室内走廊动态避障、楼层导航、狭小空间导航,室外长距离导航,以及室内到室外的自主导航。
基于多传感器融合的室外巡检机器人同时定位与建图研究[M]
摘要:近年来,随着移动机器人的不断发展,室外巡检机器人逐渐应用于日常生活中。传统的室外移动机器人是基于全球卫星定位系统(Global Positioning System,GPS)或者惯性导航系统(Inertial Navigation System,INS)进行定位,然而当 GPS 信号受到非视距与多路径等因素影响时,传统依靠 GPS 定位的方法出现较大偏差,此外当移动机器人行驶到 GPS 拒止环境中时,会出现无法获取 GPS 定位数据的情况。因此人们逐渐使用以视觉相机或者激光雷达为主的同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)技术来进行室外巡检机器人的定位与导航。
相较于视觉相机容易受光照强度变化的影响等缺点,激光雷达对光照强度不敏感,可以在不同室外环境中准确感知周围环境,从根本上保证激光 SLAM系统在室外环境中的精度,因此以激光雷达为核心的 SLAM 系统成为大多数室外移动机器人公司的方案。此外由于单纯使用激光雷达的 SLAM 系统无法解决环境退化、采样频率低等问题,常采用惯性测量单元(Inertial Measurement Unit,IMU)应用于中小范围场景下解决该问题。然而由于惯性测量单元的测量误差会随着时间的增加而增加,并且在大范围场景下使用激光雷达与惯性测量单元的 SLAM系统精度会有所下降。为了提升激光惯性 SLAM系统的精度,所以常采用融合 GPS 数据的方法消除累计误差。
本文针对面向巡检机器人在科技园区室外环境中出现 GPS 中断情况下以激光雷达为核心的多传感器融合 SLAM 算法精度下降的问题进行研究。以激光雷达为核心,提出一种结合激光雷达、IMU与GPS的多传感器融合SLAM方法。首先,为了搭建完整的多传感器融合算法,针对巡检机器人底盘与各个传感器建立了数据采样模型与坐标系。同时对激光雷达、IMU与 GPS之间的坐标系外参进行标定,并标定出IMU的内参,从而更精确地融合激光雷达、IMU与GPS的传感器测量数据。最后使用软硬件相结合的方法,实现对激光雷达、IMU 与GPS 的时间同步。
其次,针对基于传统激光 SLAM 系统其前端里程计在长时间运行时出现精度不佳的问题,并且为了巡检机器人行驶到 GPS 拒止环境中出现 GPS 数据中断时机器人定位更准确,提出一种使用迭代误差卡尔曼滤波(Iterative Error Kalman Filter,IESKF)紧耦合激光雷达与惯性测量单元的前端里程计,提升在室外场景中仅使用激光雷达与惯性测量单元进行机器人位姿估计时的精度。并且在 KITTI 数据集上与传统的前端里程计进行实验评估。证明了 IESKF 前端里程计在室外场景中的精度要优于传统的前端里程计。
然后,基于 IESKF 的激光惯性里程计的全局精度仍有提升的空间,并且为了进一步提高算法的定位精度和鲁棒性,提出使用因子图优化的方式融合激光雷达、惯性测量单元与 GPS 的方法。在因子图优化的 SLAM 系统中,为了减小图优化产生的计算负荷,采用关键帧与滑动窗口策略,在因子图中加入IESKF所得到的激光惯性里程计因子与 IMU预积分因子,并且为了进一步减小累计误差,加入回环检测因子与 GPS 因子,在 GPS 数据出现波动的情况下,同时基于 GPS 状态与置信度筛选 GPS 数据,防止加入异常的 GPS 数据。
最后,为了验证本文提出的多传感器融合 SLAM 系统的精度与鲁棒性,通过开源数据集 KITTI 与自建的巡检机器人平台在 GPS 不中断与 GPS 中断的两种情况下进行测试,并且与其他开源的 SLAM 算法进行轨迹与位姿的评估。结果表明本文提出的 SLAM 系统在 GPS 不中断与 GPS 中断的两种情况下都有着更优秀的精度。
室内外交变环境下多源传感器融合的智能移动机器人地图拼接与导航技术[M]
摘要: 近年来,随着人工成本的不断上涨和客户端需求的不断增加,智能移动机器人在智能工厂、物流搬运、智能巡检等领域得到广泛应用。而智能移动机器人在室内外交变环境下的定位导航技术是其适应多场景发展和应用的关键问题之一。目前,国内外学者基于智能移动机器人在室内外交变环境下实现定位导航做了大量的研究,主要方法是通过搭载分别适用于室内和室外的定位传感器通过实时切换定位方式实现导航。但由于实际室内外交变环境的复杂性,该方法实现定位导航还存在一些问题。针对多源传感器融合定位方法在室内外交变环境下不能灵活切换;栅格地图拼接准确率低;室内外交变环境下移动机器人无缝定位导航稳定性不高的问题。本论文构建了多源传感器融合定位模型;提出基于动态置信度的室内外局部栅格地图拼接方法;建立智能移动机器人基于拼接地图和多源传感器融合的定位导航方法。最后基于上述研究内容分别展开实验验证。
(1)构建室内外交变环境智能移动机器人多源传感器融合模型。通过分析目前普遍适用于室内和室外的定位传感器的性能以及定位效果,结合实际室内外环境对传感器的选择,构建采用激光雷达、GPS、IMU、Odom 和电磁传感器多源传感器信号融合模型。该模型主要以实际工作环境进行分类,分为适用于室内环境、室外狭小环境、室外开阔环境以及室内外交变环境。利用激光雷达/IMU/Odom、激光雷达/GPS、激光 SLAM/电磁传感器以及激光雷达/GPS/IMU/Odom 的信号融合方式以扩展卡尔曼滤波算法进行数据融合处理,最终实现自主切换融合方式以适应不同的工作环境。论文详细介绍了融合算法实现过程,并对几种融合方式在实际环境中的运行效果进行测试,验证了该融合模型的有效性。
(2)提出基于动态置信度的室内外栅格地图拼接方法。针对 SLAM 技术在室内外实际环境下创建二维栅格地图不能同时包括室内和室外点云信息且栅格地图拼接成功率低的问题,提出基于动态置信度的室内外栅格地图拼接方法。该方法首先根据多机器人协作定位建图的方式,建立主从结构的两台虚拟机器人主机,将创建的二维局部栅格地图转换为图像保存为两个机器人的话题,通过调用 SIFT 特征检测算法进行基于图像特征匹配的方法实现拼接。针对栅格地图特征相似度高且边缘特征模糊的问题,提出动态调节置信度的方法提高栅格地图拼接成功率。论文详细介绍了拼接过程,并利用不同环境下栅格地图拼接效果的测试验证了基于动态置信度优化方法的有效性。
(3)建立基于多源传感器融合与拼接地图的定位导航系统。在 ROS 机器人操作系统中建立机器人运行环境,使用拼接的室内外地图作为导航时的静态地图与多源传感器融合模型的实时定位数据实现机器人在室内外交变环境的定位导航。在统一的map 坐标系中,机器人定位导航系统通过调用全局和局部路径规划算法进行起始点到目标点的导航,通过目标点的定位坐标验证基于多源融合模型与静态地图导航系统的可靠性。
(4)搭建实验环境与实验平台并进行实验验证。分别在室内环境、室外环境、室内外交变环境下对多源传感器融合模型进行定位导航实验。由实验数据得出基于多源传感器融合模型的定位精度,平均偏差 x 轴 0.16m,y 轴 0.15m;在室内外交变环境以拼接地图作为静态地图的导航精度平均偏差 x 轴 0.20m,y 轴 0.06m;移动机器人基于多源传感器融合模型和拼接地图重定位的导航精度平均偏差 x 轴 0.17m,y 轴0.22m。实验结果表明,论文提出的室内外交变环境下多源融合的智能移动机器人地图拼接与导航技术能够实现多场景下定位导航且能达到厘米级的定位精度,为智能移动机器人在更多领域定位导航发展奠定了基础。