若需观看机器人系列相关博客,请劳驾至:【足式机器人无死角系列之-【强化学习基础-通用】、【仿真及训练环境】、【强化学习】:isaac-gym 与 isaac-lab 从零开始
郑重声明:该系列博客为本人 ( W e n h a i Z h u ) 独家私有 , 禁止转载与抄袭 , 首次举报有谢 , 若有需请私信授权! \color{red}郑重声明:该系列博客为本人(WenhaiZhu)独家私有,禁止转载与抄袭,首次举报有谢,若有需请私信授权! 郑重声明:该系列博客为本人(WenhaiZhu)独家私有,禁止转载与抄袭,首次举报有谢,若有需请私信授权!
本系列博客链接为: {\color{blue}本系列博客链接为:} 本系列博客链接为:【05.issac-lab】最新从零无死角系列-(00) 目录最新无死角源码讲解:https://blog.csdn.net/weixin_43013761/article/details/143084425
通过前面的博客完成了环境搭建,且对 isaac-lab 设计理念有了一定了解,下面就是对源码进行分析了,接下来该系列博客应该对 isaac-lab 源码进行讲解,本人不漏过任何细节,进行全面的分析,后续的工程与代码可能就没有这个待遇了。(* ̄︶ ̄) 上一篇博客,了解 Isaac-sim 设计理念与基本结构。其中包含任务设计工作流程、强化学习库比较、Hydra 配置系统。目前 isaac-lab 支持的强化学习库有 SKRL、 rsl_rl、 rl_games、 Stable-Baselines3。后续过程中,首先以 rsl_rl 库为主,进行学习与讲解,因为本人方向主要为足式机器人,且对该库比较熟悉。不过也会进行拓展,对其他强化学习库也进行讲解与剖析。 重点: 这里学到的,不仅仅是代码的理解,而是会告诉你应该如何取分析一套陌生,或者不熟悉的强化学习代码,通用思维与技巧,只要看明白这一系列博客,后面所有强化学习的代码或开源项目应该都是有能力独立阅读的。 思来想去,本人最终于还是决定从主体框架入手进行讲解,只有知道整体流程是如何的,在后续分析细节时才能不迷惘,所以顺着以下思路对代码进行剖析: √ 1: 了解 Isaac-sim 设计理念与基本结构。 2: 掌握训练过程的总体流程(以任务为导向) --> 该篇博客。 3: 环境与强化学习库,或者强化学习算法是如何联系到一起的。 4: ......待定 个人感觉,只要知道了这些东西,对于工程的整体把控应该算是不错了,后续就是细节的解刨了:比如如何创建带相机的机器人;如何构建各总各样的地形;如何获取网络的输出的力矩对机器人进行控制等。 注意:如果有提示大家,[大致过一遍即可,不用在意细节] 的地方,就不要钻牛角尖,快速阅读一下即可,后面会回过来百分百的进行详细分析。 |
本博客编写于: 20250105 ,台式机为 u b u n t u 20.04 , 3090 G e F o r c e R T X 显存 24 G { \color{purple} 本博客编写于:20250105,台式机为 ubuntu 20.04,3090 GeForce RTX 显存24G} 本博客编写于:20250105,台式机为ubuntu20.04,3090GeForceRTX显存24G:与你现在的代码,或者环境等存在一定差异也在情理之中,故切勿认为该系列博客绝对正确,且百密必有一疏,若发现错误处,恳请各位读者直接指出,本人会尽快进行整改,尽量使得后面的读者少踩坑,评论部分我会进行记录与感谢,只有这样,该系列博客才能成为精品,这里先拜谢各位朋友了。
文末正下方中心提供了本人 联系方式, 点击本人照片即可显示 W X → 官方认证,请备注 强化学习 。 {\color{blue}{文末正下方中心}提供了本人 \color{red} 联系方式,\color{blue}点击本人照片即可显示WX→官方认证,请备注\color{red} 强化学习}。 文末正下方中心提供了本人联系方式,点击本人照片即可显示WX→官方认证,请备注强化学习。
一、前言
上一篇博客中,主要对 isaac-lab 的设计理念进行了介绍,首先大致说明 Omniverse、Isaac-sim 、Isaac-lab 三者之间的关系。接着简单介绍了一下 isaac-lab 的设计理想,其主要是利用管理器这种方式,把每个模块设计成组件然后进行交互,这种不仅达到解耦的目的,且用户根据自己的需求,可以往管理器中添加自定义的模块,当然,这相对来说是比较高级的操作,不过没有关系,后面学习过程中会进行详细讲解。
该篇博客开始,将对源码进行分析与解读,若是读过本人之前简介 isaac-gym 相关博客,如 【04.isaac-gym】最新从零无死角系列-(03) extreme-parkour之源码分析-tran.py一阶段训练过程整体框架讲解 应该是具备一定开源代码阅读能力的,没有读过也没有关系,现在从零开始解读 isaac-lab 相关源码。关于 isaac-lab 源码是如何运行的,这里就不再讲解了,本人分析代码主要基于 .vscode/launch.json 如下:
{
"name": "Python: Train Environment",
"type": "debugpy",
"request": "launch",
"args" : ["--task", "Isaac-Velocity-Rough-Unitree-Go2-v0", "env.scene.num_envs=128"], // "--headless"
"program": "${workspaceFolder}/scripts/reinforcement_learning/rsl_rl/train.py",
"console": "integratedTerminal",
"justMyCode": false
},
{
"name": "Python: Play Environment",
"type": "debugpy",
"request": "launch",
"args" : ["--task", "Isaac-Velocity-Rough-Unitree-Go2-v0", "--num_envs", "32"],
"program": "${workspaceFolder}/scripts/reinforcement_learning/rsl_rl/play.py",
"console": "integratedTerminal"
}
也就是说,以 Isaac-Velocity-Rough-Unitree-Go2-v0 这个任务为引导,进行源码的阅读与理解,其对应于终端训练的播放的指令为:
# 训练
python scripts/reinforcement_learning/rsl_rl/train.py --task=Isaac-Velocity-Rough-Unitree-Go2-v0 --headless
# 播放(查看训练效果)
python scripts/reinforcement_learning/rsl_rl/play.py --task=Isaac-Velocity-Rough-Unitree-Go2-v0 --num_envs 32
根据指令,可以知道 source/standalone/workflows/rsl_rl/train.py 就是主程序的如何,所以分析代码也应该以这里为切入口。
二.train.py 代码注释
[ 大致过一遍即可,不用在意细节,后面有详细分析 ] : \color{blue}[大致过一遍即可,不用在意细节,后面有详细分析]: [大致过一遍即可,不用在意细节,后面有详细分析]: 为了熟悉训练过程大致流程,本人给出 scripts/reinforcement_learning/rsl_rl/train.py文件注释,如下所示:
# Copyright (c) 2022-2025, The Isaac Lab Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
"""Script to train RL agent with RSL-RL."""
"""Launch Isaac Sim Simulator first."""
import argparse
import sys
from omni.isaac.lab.app import AppLauncher # 对 Isaac Sim 应用程序进行分装的实用工具类
# local imports,用于管理 RSL-RL 的配置参数
import cli_args # isort: skip, 跳过 isort 的排序
# add argparse arguments,用于解析命令行参数
parser = argparse.ArgumentParser(description="Train an RL agent with RSL-RL.")
# 训练期间是否录制视频
parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
# 录制视频的长度
parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
# 视频录制的时间间隔,以与环境交互的步数为单位
parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).")
# 仿真引擎中模拟智能体的数量
parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
# 任务名称
parser.add_argument("--task", type=str, default=None, help="Name of the task.")
# 环境种子
parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
# 最大迭代次数
parser.add_argument("--max_iterations", type=int, default=None, help="RL Policy training iterations.")
# append RSL-RL cli arguments,添加 RSL-RL 的命令行参数
cli_args.add_rsl_rl_args(parser)
# append AppLauncher cli args,添加 AppLauncher 的命令行参数,其会覆盖配置文件中的参数
AppLauncher.add_app_launcher_args(parser)
# 进行参数解析,返回命令行基本参数与 hydra 格式配置参数
args_cli, hydra_args = parser.parse_known_args()
# always enable cameras to record video,如果需要录制视频,则启界面观测相机
if args_cli.video:
args_cli.enable_cameras = True
# clear out sys.argv for hydra,清除命令行参数,只保留 hydra 格式参数
sys.argv = [sys.argv[0]] + hydra_args
# launch omniverse app,启动 Omniverse 应用程序,获取 isaac-sim app 应用 SimulationApp 对象
app_launcher = AppLauncher(args_cli)
simulation_app = app_launcher.app
"""Rest everything follows."""
import gymnasium as gym
import os
import torch
from datetime import datetime
from rsl_rl.runners import OnPolicyRunner
from omni.isaac.lab.envs import (
DirectMARLEnv,
DirectMARLEnvCfg,
DirectRLEnvCfg,
ManagerBasedRLEnvCfg,
multi_agent_to_single_agent,
)
from omni.isaac.lab.utils.dict import print_dict
from omni.isaac.lab.utils.io import dump_pickle, dump_yaml
import omni.isaac.lab_tasks # noqa: F401
from omni.isaac.lab_tasks.utils import get_checkpoint_path
from omni.isaac.lab_tasks.utils.hydra import hydra_task_config
from omni.isaac.lab_tasks.utils.wrappers.rsl_rl import RslRlOnPolicyRunnerCfg, RslRlVecEnvWrapper
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
@hydra_task_config(args_cli.task, "rsl_rl_cfg_entry_point")
def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg | DirectMARLEnvCfg, agent_cfg: RslRlOnPolicyRunnerCfg):
"""Train with RSL-RL agent."""
# STEP: 1.更新 RSL-RL 的配置参数,使用非 hydra 命令行参数覆盖配置文件中的参数
# override configurations with non-hydra CLI arguments,
agent_cfg = cli_args.update_rsl_rl_cfg(agent_cfg, args_cli)
# 更新环境配置,设置仿真引擎中模拟智能体的数量,命令行参数优先
env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs
# 更新训练迭代次数,命令行参数优先,其会覆盖配置文件中的最大迭代次数
agent_cfg.max_iterations = (
args_cli.max_iterations if args_cli.max_iterations is not None else agent_cfg.max_iterations
)
# STEP: 2.设置环境种子,以及仿真运行设备,如 GPU 或者 CPU
# set the environment seed
# note: certain randomizations occur in the environment initialization so we set the seed here
env_cfg.seed = agent_cfg.seed
# 更新仿真硬件设备,命令行参数优先
env_cfg.sim.device = args_cli.device if args_cli.device is not None else env_cfg.sim.device
# STEP: 3.设置日志,以及训练模型,以及视屏记录的目录
# specify directory for logging experiments
log_root_path = os.path.join("logs", "rsl_rl", agent_cfg.experiment_name)
log_root_path = os.path.abspath(log_root_path)
print(f"[INFO] Logging experiment in directory: {log_root_path}")
# specify directory for logging runs: {time-stamp}_{run_name}
log_dir = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
if agent_cfg.run_name:
log_dir += f"_{agent_cfg.run_name}"
log_dir = os.path.join(log_root_path, log_dir)
# STEP: 4.创建仿真环境,该为 isaac-sim 的仿真环境
# create isaac environment
env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
# STEP: 5.如果任务为多类智能体任务,则将多类智能体任务转换为单类智能体任务,这是因为 RSL-RL 默认只支持单类智能体算法
# 这里的多类并不是多个的意思,如把智能体分成两类,让他们进行格斗训练,或者左右手互相搏斗都属于多类智能体任务
# convert to single-agent instance if required by the RL algorithm
if isinstance(env.unwrapped, DirectMARLEnv):
env = multi_agent_to_single_agent(env)
# STEP: 6.保存恢复路径,如果需要恢复训练,则从恢复路径中加载模型
# save resume path before creating a new log_dir
if agent_cfg.resume:
resume_path = get_checkpoint_path(log_root_path, agent_cfg.load_run, agent_cfg.load_checkpoint)
# STEP: 6.视屏录制包装器,通过 gym.wrappers.RecordVideo 包装之后,训练过程中可根据参数自动录制视频
# wrap for video recording
if args_cli.video:
video_kwargs = {
"video_folder": os.path.join(log_dir, "videos", "train"), # 视频保存目录
"step_trigger": lambda step: step % args_cli.video_interval == 0, # 每间隔 video_interval 步,该函数返回 True,则开始录制视频
"video_length": args_cli.video_length, # 视频录制的长度
"disable_logger": True, # 是否禁用日志记录
}
print("[INFO] Recording videos during training.")
print_dict(video_kwargs, nesting=4)
env = gym.wrappers.RecordVideo(env, **video_kwargs) # 将 env 包装为 gym.wrappers.RecordVideo 对象
# STEP: 7.将环境包装为 RSL-RL 的向量(并行-多智能体)环境,简单的说就是对 env 输出结果进行处理,使其符合 OnPolicyRunner 的输入
# wrap around environment for rsl-rl
env = RslRlVecEnvWrapper(env)
# STEP: 8.创建 OnPolicyRunner 对象,用于训练和评估,将当前 git 状态添加到日志中,如果需要恢复训练,则从恢复路径中加载模型
# create runner from rsl-rl
runner = OnPolicyRunner(env, agent_cfg.to_dict(), log_dir=log_dir, device=agent_cfg.device)
# write git state to logs
runner.add_git_repo_to_log(__file__)
# load the checkpoint
if agent_cfg.resume:
print(f"[INFO]: Loading model checkpoint from: {resume_path}")
# load previously trained model
runner.load(resume_path)
# STEP: 9.将环境配置和智能体配置保存到日志目录中, 用于训练参数的记录与后续回顾等
# dump the configuration into log-directory
dump_yaml(os.path.join(log_dir, "params", "env.yaml"), env_cfg)
dump_yaml(os.path.join(log_dir, "params", "agent.yaml"), agent_cfg)
dump_pickle(os.path.join(log_dir, "params", "env.pkl"), env_cfg)
dump_pickle(os.path.join(log_dir, "params", "agent.pkl"), agent_cfg)
# STEP: 10.运行训练,训练过程中会根据参数进行训练迭代,并记录训练过程中的数据
# run training
runner.learn(num_learning_iterations=agent_cfg.max_iterations, init_at_random_ep_len=True)
# STEP: 11.训练迭代完成之后,关闭仿真环境
# close the simulator
env.close()
if __name__ == "__main__":
# run the main function
main()
# close sim app
simulation_app.close()
三、代码分析-环境创建
1.参数覆盖
在阅读完上面的注释之后,应该对于整体的训练过程稍微有点了解,其首先对命名行的参数进行了一些处理。命令行参数主要分为两个部分,一部分为普通命令行参数,另外一部分属于 Hydra 配置参数。后者在上一篇博客中有进行详细介绍,比如启动训练指令时,可附加参数 env.scene.num_envs=32。
关于普通命名行参数就不做过多解释了,不过从代码中可以看到 “–video”,“–video_length” 等参数。其是用来配置在训练过程中如何录制视屏的,该部分内容在下一篇博客中会进行详细讲解。
有的朋友可能存在一些疑问,那就是有的参数可以通过普通命令行指定,比如 --num_envs,且又可以通过 Hydra 配置,比如 env.scene.num_envs。他们若是同时配置,以谁为主呢?经过本人试验,–num_envs 参数会覆盖 env.scene.num_envs,且代码中也有体现:
@hydra_task_config(args_cli.task, "rsl_rl_cfg_entry_point")
def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg | DirectMARLEnvCfg, agent_cfg: RslRlOnPolicyRunnerCfg):
......
env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs
......
首先 hydra 装饰器 @hydra_task_config 会处理好 env.scene.num_envs 参数,但是处理完成之后,若命令行配置了 --num_envs 参数,则会被其覆盖。关于参数 “–seed”、“–max_iterations” 也是同样会覆盖 hydra 配置。总的来说,普通命令行参数优先级是最高的。
2.启动 isaac-sim
加载智能体之前,当然是需要启动 isaac-sim,可以选择以无头或者渲染模式,主要通过 “–headless” 参数进行指定。代码中 AppLauncher 就是对 isaac-sim 应用程序进行分装的实用工具类,启动过程比较简单,核心代码如下所示:
# append AppLauncher cli args,添加 AppLauncher 的命令行参数,其会覆盖配置文件中的参数
AppLauncher.add_app_launcher_args(parser)
# launch omniverse app,启动 Omniverse 应用程序,获取 isaac-sim app 应用 SimulationApp 对象
app_launcher = AppLauncher(args_cli)
simulation_app = app_launcher.app
首先通过 AppLauncher.add_app_launcher_args(parser),解析命令行关于 isaac-sim 相关的参数,具体代码位于 source/extensions/omni.isaac.lab/omni/isaac/lab/app/app_launcher.py 文件中的 add_app_launcher_args() 函数,其中还包含:
"--headless":是一个布尔类型(bool)的参数
如果命令行参数 --headless 设置为 True,则强制使用无界面模式(训练过程,通常为该模式,可提高效率)
如果命令行参数 --headless 设置为 False,则会查看环境变量 HEADLESS 的值来决定是否使用无界面模式
"--livestream": 设置为 1 或 2 时,会自动启用 headless 模式(无图形界面模式),同时启用相应的实时流媒体功能。
-1: 默认值,此时会使用环境变量 LIVESTREAM 的值来决定是否启用实时流媒体
0(禁用实时流媒体)
1(启用 Native 实时流媒体模式),细节参考 https://docs.omniverse.nvidia.com/extensions/latest/ext_livestream/native.htm
2(启用 WebRTC 实时流媒体模式),细节参考 https://docs.omniverse.nvidia.com/extensions/latest/ext_livestream/webrtc.html
这个功能在以下场景很有用,在没有显示器的服务器上运行 Isaac Sim,需要远程查看模拟场景,在容器或云环境中运行仿真时。如果设置 --livestream 2,那么 Isaac Sim
将会以 headless 模式运行,并启用 WebRTC 流媒体,你可以通过浏览器访问 http://localhost:8211/streaming/webrtc-client/ 来查看仿真画面。
"--enable_cameras":enable_cameras 是一个布尔类型(bool)的参数,当设置为 True 时,会启用相机传感器并进行渲染,即使在无头模式(headless mode)下也会启用相机功能。
如果环境中包含任何相机传感器,必须将此标志设置为 True,否则相机传感器将无法正常工作。可以通过命令行参数 --enable_cameras 设置,
也可以通过环境变量 ENABLE_CAMERAS 设置,如果命令行参数为 False,则会使用环境变量 ENABLE_CAMERAS 的值作为实际设置。
"--device":
cpu: 使用 CPU 运行仿真
cuda: 使用 GPU 运行仿真,默认使用设备 ID 为 0 的 GPU
cuda:N: 使用指定 ID 号的 GPU 运行仿真,其中 N 是 GPU 的设备 ID 号。例如 "cuda:0" 表示使用 ID 为 0 的 GPU
剩下一些命令行参数比如:
"--verbose" "--info" "--experience" "--kit_args"
这里就不再逐一介绍,因为在 def add_app_launcher_args() 函数中英文注释有详细说明。个人这几个参数暂时没有使用,若使用到,后续会单独分析。
3.创建环境
启动仿真程序之后,当然就是加载仿真环境,主要包含地形以及并行训练智能体等,深度相机等。直白的说,即使构建训练环境。其核心代码为:
# STEP: 4.创建仿真环境,该为 isaac-sim 的仿真环境
# create isaac environment
env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
不过这里创建的 env 是 isaac-lab 最基本的环境,虽然其中已经包含了各个管理器,比如:Action Manager、Command Manager、Observation Manager 等等。且只要接收动作 action 即可完成与环境的交互,收集经验数据,且完成观测、回报、终结等计算过程。
不过正是因为其是 isaac-lab 中最基本的环境实例对象,功能比较单一,且输出的数据结构已经固定,比如说交互过程中,通过输入强化学习网络输出结果 actions 给到其 step() 函数:
obs_dict, rew, terminated, truncated, extras = self.env.step(actions)
其得到的结果分别为观测、回报、智能体是否终结、截断(达到设定生命周期最大值)。显然,该结果格式已经固定,但是要知道 isaac-lab 是支持多个强化学习库的,这些强化学习库并不是 isaac-lab 的一部分,输入接口是其他开发团队定义的。如何才能使得 isaac-lab 兼容 SKRL、RSL-RL、RL-Games 这么多强化学习库呢?
其实在上一篇博客中有提到,其使用了强化学习包装器:https://docs.robotsfan.com/isaaclab/source/overview/reinforcement-learning/rl_existing_scripts.html。关于强化学习库 RSL-RL 的包装其就是代码中的:
env = RslRlVecEnvWrapper(env)
具体实现位于 source/extensions/omni.isaac.lab_tasks/omni/isaac/lab_tasks/utils/wrappers/rsl_rl/vecenv_wrapper.py 文件,这里就先跳过,除了强化学习包装器,还有如果两个包装器,都将在下一篇博客中进行详细介绍:
# STEP: 5.如果任务为多类智能体任务,则将多类智能体任务转换为单类智能体任务,这是因为 RSL-RL 默认只支持单类智能体算法
# 这里的多类并不是多个的意思,如把智能体分成两类,让他们进行格斗训练,或者左右手互相搏斗都属于多类智能体任务
# convert to single-agent instance if required by the RL algorithm
if isinstance(env.unwrapped, DirectMARLEnv):
env = multi_agent_to_single_agent(env)
# STEP: 6.视屏录制包装器,通过 gym.wrappers.RecordVideo 包装之后,训练过程中可根据参数自动录制视频
# wrap for video recording
if args_cli.video:
video_kwargs = {
"video_folder": os.path.join(log_dir, "videos", "train"), # 视频保存目录
"step_trigger": lambda step: step % args_cli.video_interval == 0, # 每间隔 video_interval 步,该函数返回 True,则开始录制视频
"video_length": args_cli.video_length, # 视频录制的长度
"disable_logger": True, # 是否禁用日志记录
}
print("[INFO] Recording videos during training.")
print_dict(video_kwargs, nesting=4)
env = gym.wrappers.RecordVideo(env, **video_kwargs) # 将 env 包装为 gym.wrappers.RecordVideo 对象
四、代码分析-强化学习
通过上面你的代码分析,知道train.py 是通过 gym.make() 函数完成仿真训练环境构建的,不用多说,在这之后就是利用强化学习库,构建强化学习网络,利用从环境获取的经验轨迹数据进行训练:
# STEP: 8.创建 OnPolicyRunner 对象,用于训练和评估,将当前 git 状态添加到日志中,如果需要恢复训练,则从恢复路径中加载模型
# create runner from rsl-rl
runner = OnPolicyRunner(env, agent_cfg.to_dict(), log_dir=log_dir, device=agent_cfg.device)
# STEP: 10.运行训练,训练过程中会根据参数进行训练迭代,并记录训练过程中的数据
# run training
runner.learn(num_learning_iterations=agent_cfg.max_iterations, init_at_random_ep_len=True)
其实就是调用 https://github.com/leggedrobotics/rsl_rl 这强化学习库。本人还是比较熟悉的,如果使用过 https://github.com/leggedrobotics/legged_gym 训练过足式机器人,那么对该部分代码应该也是比较熟悉的。不过都没有关系,后续过程中本人会对其中的代码进行详细的分析。
五、结语
通过该篇博客的分析,以启动指令 source/standalone/workflows/rsl_rl/train.py 为线索,对 train.py 源码进行了分析。总体框架,从广意上来说还是比较简单的,无非就是三个操作:1.启动 isaac-sim 仿真引擎。2.创建仿真环境,进行一些包装。3.创建强化学习算法,与仿真环境进行交互,且进行训练,那么关于第2项也可以打√:
√ 2: 掌握训练过程的总体流程(以任务为导向) --> 该篇博客。 |