heatmap

    关于回归heatmap:根据每个点到中心线的距离:亮度与距离成反比

    1.每个点到中心线的距离(dis)

    ef getDis(pointX,pointY,lineX1,lineY1,lineX2,lineY2):
        a=lineY2-lineY1
        b=lineX1-lineX2
        c=lineX2*lineY1-lineX1*lineY2
        dis=(abs(a*pointX+b*pointY+c))/(pow(a*a+b*b,0.5))
        return dis
    
    # # Compute gaussian kernel
    def CenterGaussianHeatMap(img_array, x1,x2, variance):
        gaussian_map = np.zeros_like(img_array)
        for y_p in range(img_array.shape[0]):
            for x_p in range(img_array.shape[1]):
                dist_sq = getDis(x_p, y_p,x1,0,  x2,img_array.shape[1])
                exponent = dist_sq / variance / variance * 2.5  # 因子2.5可进行调整
                gaussian_map[y_p, x_p] = exp(-exponent)
        return gaussian_map
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

    2.由两个点确定直线的表达式,再求出点到直线的具体

    点1(c_x1,0),点2(c_x2,img_array.shape[1])

    def CenterLabelHeatMap(img_array1, c_x1, c_x2, sigma,path):
        img_height = img_array1.shape[0]
        img_width = img_array1.shape[1]
        cv2.line(img_array1, (c_x1, 0), (c_x2, img_array1.shape[1]), (255, 0, 0), lineType=cv2.LINE_AA)
        cv2.imwrite("/data/zmm/Cardiac/data/img1/test_img.png", img_array1)  # 原图+回归线
        lineY1 = 0
        lineY2 = img_width
        a = lineY2 - lineY1
        b = c_x1 - c_x2
        c = -(lineY2 - lineY1) * c_x1
    
        X1 = np.linspace(1, img_width, img_width)
        Y1 = np.linspace(1, img_height, img_height)
        [X, Y] = np.meshgrid(X1, Y1)
        dis = (abs(a * X + b * Y + c)) / (pow(a * a + b * b, 0.5))
        exponent = dis / sigma / sigma * 2.5
        heatmap = np.exp(-exponent.astype(float))
        return heatmap
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18

    3.注意

    https://blog.csdn.net/Fire_Light_/article/details/84974283

    cv2.getGaussianKernel(size,sigma)可以生成一个一维的高斯核kernel,
    二维的高斯核可以用kernel与kenel的转置求矩阵积得到。

    kernel=cv2.getGaussianKernel(256,50)
    kernel=kernel*kernel.T
    #scales all the values and make the center vaule of kernel to be 1.0
    kernel=kernel/np.max(kernel)

    注意将矩阵的dtype转为uint8,不然opencv将无法显示图片。
    cv2.applyColorMap()函数依据第二个参数可以将灰度图转化为不同风格的RGB图,这里我们选择cv2.COLORMAP_HOT。

    heatmap=kernel*255
    heatmap=heatmap.astype(np.uint8)
    heatmap=cv2.applyColorMap(heatmap, cv2.COLORMAP_HOT)
    cv2.imshow(‘heatmap’,heatmap)
    cv2.waitKey(0)

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值

    举报

    选择你想要举报的内容(必选)
    • 内容涉黄
    • 政治相关
    • 内容抄袭
    • 涉嫌广告
    • 内容侵权
    • 侮辱谩骂
    • 样式问题
    • 其他
    点击体验
    DeepSeekR1满血版
    程序员都在用的中文IT技术交流社区

    程序员都在用的中文IT技术交流社区

    专业的中文 IT 技术社区,与千万技术人共成长

    专业的中文 IT 技术社区,与千万技术人共成长

    关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

    关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

    客服 返回顶部