张量Tensors
| 如果obj是PyTorch张量,则返回True。 | |
| 如果obj是PyTorch存储对象,则返回True。 | |
| 如果输入的数据类型是复数类型,则返回True。torch.complex64和torch.complex128。 | |
| 如果输入是共轭张量,即其共轭位设置为True,则返回True。 | |
| 如果输入的数据类型是浮点数据类型,则返回True | |
| 如果输入是类型转换后不等于零的单元素张量,则返回True。 | |
| 将默认浮点数据类型设置为d。 | |
| 获取当前默认的浮点值 torch.dtype. | |
| 设置默认torch.Tensor到浮点张量类型t。 | |
| 返回输入张量中的元素总数。 | |
| 设置打印选项。 | |
| 禁用CPU上的非规范浮点数。 |
创建张量
随机抽样创建操作在随机抽样下,包括: torch.rand() torch.rand_like() torch.randn() torch.randn_like() torch.randint() torch.randint_like() torch.randperm() 下面不包括这部分。
| 用数据data构造一个张量。 | |
| 在给定的索引处构造具有指定值的坐标(坐标)格式的稀疏张量。 | |
| 将数据转换成torch.Tensor。 | |
| 创建一个现有torch.Tensor输入的视图,指定 | |
| 通过 numpy.ndarray创建Tensor | |
| 从实现Python缓冲区协议的对象创建一维张量。 | |
| 返回一个由标量值0填充的张量,形状由变量参数大小定义。 | |
| 返回一个标量值0填充的张量,其大小与输入相同。 | |
| 返回一个由标量值1填充的张量,形状由变量参数大小定义。 | |
| 返回一个填充标量值1的张量,其大小与输入相同。 | |
| 返回大小为的一维张量,从开始到结束的公共差分步step在间隔[start,end]/step中取值。 | |
| 返回大小为的一维张量,从开始到结束的公共差分步step在间隔[start,end]/step+1中的值。 | |
| 创建大小为步长的一维张量,其值从起点到终点(包括起点和终点)均匀分布。 | |
| 创建大小为步长的一维张量,其值从起点到终点(包括起点和终点)log分布。 | |
| 返回一个二维张量,对角线上为1,其他地方为0。 | |
| 返回一个充满未初始化数据的张量。 | |
| 返回与输入大小相同的未初始化张量。 | |
| 返回一个充满未初始化数据的张量。 | |
| 创建一个大小为size的张量,用fill_value填充。 | |
| 返回一个张量,其大小与用fill_value填充的输入相同。 | |
| 将浮点张量转换为具有给定标度和零点的量化张量。 | |
| 将浮点张量转换为具有给定标度和零点的每通道量化张量。 | |
| 通过对量化张量进行去量化,返回fp32张量 | |
| 构造一个实部等于real、虚部等于imag的复张量。 | |
| 构造一个复张量,其元素为笛卡尔坐标,对应于绝对值为abs和角度为angle的极坐标。 | |
| 为输入中的每个元素计算Heaviside步长函数。 |
索引、切片、连接、变换操作
| 在给定维中连接给定序列的seq张量。 | |
| 返回带有翻转共轭位的输入视图。 | |
| 尝试将张量拆分为指定数量的块。 | |
| 根据indices_或_sections,将具有三个或更多维度的输入张量纵深拆分为多个张量。 | |
| 通过在张量中水平叠加张量来创建新的张量。 | |
| 按深度顺序叠加张量(沿第三轴)。 | |
| 沿dim指定的轴收集值。 | |
| 根据索indices_或_sections,将输入(一个或多个维度的张量)水平拆分为多个张量。 | |
| 按顺序水平(按列)叠加张量。 | |
| 返回一个新的张量,该张量使用作为LongTensor的索引中的值沿维度dim对输入张量进行索引。 | |
| 返回一个新的1-D张量,该张量根据布尔掩码对输入张量进行索引,该掩码是BoolTensor. | |
| 将源位置的输入维度移动到目标位置。 | |
| 返回一个新的张量,它是输入张量的缩小版本。 | |
| 返回一个二维张量,其中每一行都是非零值的索引。 | |
| 返回原始张量输入的维度进行排列后的视图。 | |
| 返回一个张量,其数据和元素数与输入相同,但具有指定的形状。 | |
| 尽量不使用,参考后面的函数Out-of-place version of torch.Tensor.scatter_() | |
| 尽量不使用,参考后面的函数Out-of-place version of torch.Tensor.scatter_add_() | |
| 将张量拆分为块。 | |
| 返回一个对维度大小为1的输入进行移除后的其他所有维度的张量。 | |
| 沿新维度连接一系列张量。 | |
| 输入为<=2-D的张量,并将维度0和1进行掉换。 | |
| 返回一个新的张量,该张量包含给定索引处的输入元素。 | |
| 从一维索引的输入中选择值,从给定维度的索引中选择值。 | |
| 将一个张量拆分为多个子张量,所有子张量都是输入视图,并根据indices_或_sections沿维度dim进行拆分。此函数基于NumPy的numpy.array_split()函数 | |
| 通过重复输入元素构造张量。 | |
| 返回一个张量,该张量是输入的转置版本。 | |
| 移除张量维度。 | |
| 返回一个新的张量,在指定位置插入一个大小为1的维度。 | |
| 根据索indices_或_sections,将输入(一个或多个维度的张量)垂直拆分为多个张量。 | |
| 垂直(按行)按顺序堆叠张量。 | |
| 根据条件,返回从x或y中选择的元素的张量。 |
本文详细介绍了PyTorch中的张量操作,包括张量的创建如`torch.tensor()`、`torch.zeros()`等,以及各种索引、切片、连接和变换方法,如`torch.cat()`、`torch.reshape()`和`torch.permute()`等。此外,还涵盖了张量的属性检查和类型转换,如`is_tensor()`、`to()`等,对于理解和操作PyTorch张量至关重要。
6173

被折叠的 条评论
为什么被折叠?



