文章介绍了一种新的多类别无监督异常检测方法——MambaAD,该方法利用了Mamba解码器的优势,特别是其出色的长距离建模能力和线性计算效率。MambaAD包含了一个预训练的编码器和一个多尺度的Mamba解码器,后者集成了局部增强状态空间(LSS)模块,能够有效捕捉远距离和局部信息。LSS模块由并行级联的混合状态空间(HSS)块和多核卷积操作组成,而HSS块则采用混合扫描(HS)编码器来加强全局连接,并利用Hilbert扫描和八个方向显著提高了特征序列的建模能力。实验结果显示,MambaAD在多种异常检测数据集上取得了最先进的性能。

1 CNN和Transformer方法存在的问题
(1)CNN的问题:
-
长距离依赖性: CNN擅长捕捉图像中的局部特征,但在处理长距离依赖性方面存在困难。这意味着对于需要跨较大区域的信息整合的任务,CNN可能无法提供最佳解决方案。
-
缺乏全局信息: CNN通常侧重于局部上下文,这使得它们难以有效地建模整个输入数据的全局结构。
(2)Transformer的问题:
-
计算复杂度: Transformer虽然在建模长距离依赖性方面表现出色,但由于其自注意力机制,计算复杂度较高,通常是O(n^2),其中n是序列长度。这对于处理高分辨率图像或长序列数据来说是一个挑战。
-
高内存需求: 高计算复杂度同时也意味着Transformer需要更多的内存资源来进行训练和推理。
2 状态空间模型
状态空间模型(State Space Models, SSMs)是一类广泛应用于序列建模的技术,尤其适用于处

最低0.47元/天 解锁文章
228

被折叠的 条评论
为什么被折叠?



