浅析强化学习Proximal Policy Optimization Algorithms(PPO)

本文深入探讨了强化学习中的PPO算法,包括基于Actor-Critic网络的架构,重点介绍了Actor网络和Critic网络的设计。PPO的关键思想在于通过限制新旧策略之间的差异,避免策略梯度更新幅度过大。文章详细解析了Actor网络求rt(θ)的过程,并阐述了PPO的整体工作流程,强调了其on-policy特性以及更新策略和GAE(Generalized Advantage Estimation)的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Actor-Critic网络

PPO是基于AC网络架构实现的。

Actor网络

PPO有一个Actor网络,Actor输入的维度为state_dim,即状态维数,输出维度为action_dim,意义是每个action的高斯策略的均值,另外,Actor网络还有action_dim个标准差参数,这样在输入一个state后,每个动作都对应一个一维的高斯分布。
在这里插入图片描述

Critic网络

PPO有一个Critic,Critic网络是用来拟合状态值函数 v π ( s

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iπ弟弟

如果可以的话,请杯咖啡吧!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值