利用深度强化学习训练机械臂环境

本文介绍了利用Movan的机械臂环境进行深度强化学习的实践,采用PPO算法并利用多进程加速训练。展示了奖励曲线及交互式训练效果,提供训练好的模型在机械臂环境中执行策略的示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

训练环境

使用Movan写的机械臂环境:https://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow/blob/master/experiments/Robot_arm/arm_env.py

这个环境真的挺有意思的,主要可以和用户交互,真真切切感受到训练后智能体的聪明程度。

提醒:python不要用3.8的,可能会和他的环境不兼容,我用的3.6的。

这个环境主要采用pyglet包写的,详见Movan的教程:Movan教你如何从0写强化学习环境(机械臂)

采用算法

既然是连续动作那就无脑PPO算法吧,当然,PPO最大的劣势就是训练慢,每一个episode都要重新收集buffer,既然这样,那就采用多进程吧,关于多进程的实现方法见我的博客

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iπ弟弟

如果可以的话,请杯咖啡吧!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值