自监督学习在CV中的突破:SimCLR、MoCo与BYOL
- 一、前言
- 二、自监督学习基础概念
- 三、SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
- 四、MoCo: Momentum Contrast for Unsupervised Visual Representation Learning
- 五、BYOL: Bootstrap Your Own Latent A New Approach to Self-Supervised Learning
- 六、SimCLR、MoCo 与 BYOL 的对比分析
- 七、自监督学习在 CV 中的未来展望
- 八、结论
- 致读者一封信
自监督学习在CV中的突破:SimCLR、MoCo与BYOL
,人工智能、大模型、AI深度学习在计算机视觉领域取得了令人瞩目的进展,自监督学习作为一种新兴的学习范式,旨在利用数据自身的结构和信息进行学习,无需大量的人工标注。其核心思想是通过设计合适的自监督任务,让模型从数据中自动挖掘出有价值的特征表示。在 CV 领域,自监督学习为解决标注数据匮乏的问题提供了新的思路,近年来取得了一系列突破性进展,其中 SimCLR、MoCo 和 BYOL 等方法尤为引人注目。
一、前言
计算机视觉是一门研究如何使机器“看”的科学