RAG(Retrieval-Augmented Generation)和Function Calling 是两种不同的技术,适用于不同的应用场景。它们在功能和使用方式上有明显区别:
1.RAG(Retrieval-Augmented Generation)
RAG 是一种结合检索和生成的模型,它的主要思想是从外部数据源中检索相关信息,然后使用生成模型(如GPT-4)来生成自然语言回复。这种方式结合了检索的准确性和生成的灵活性,非常适合回答复杂问题,尤其是需要从外部文档或数据库中获得信息的场景。
- 典型使用场景:
问答系统: 当需要回答涉及到外部知识库、文档或数据库中的具体信息时,RAG 可以先检索相关文档片段,再生成回答。例如,在医疗、法律、研究等领域,使用 RAG 可以保证提供的答案与权威文献一致。
- 文档查询:
当用户想要获取与特定文档、论文或网站相关的详细信息时,RAG 可以先从大量文档中检索到相关片段,然后通过生成式模型输出整合的信息。
知识管理系统: 企业或机构内部可能拥有大量的非结构化数据,比如电子邮件、文档和笔记。RAG 可以帮助提取相关信息,生成详细的回答。
- 优势:
基于最新数据: 能结合外部数据,提供更准确或实时的答案。
高效的长文本处理: 能处理长文档,进行内容的有效检索。
2. Function Calling
Function Calling 是通过调用特定函数或API来获取数据或执行操作的过程。OpenAI 的 Function Cal