RAG和Function calling使用的不同场景?

RAG(Retrieval-Augmented Generation)和Function Calling 是两种不同的技术,适用于不同的应用场景。它们在功能和使用方式上有明显区别:

1.RAG(Retrieval-Augmented Generation)
RAG 是一种结合检索和生成的模型,它的主要思想是从外部数据源中检索相关信息,然后使用生成模型(如GPT-4)来生成自然语言回复。这种方式结合了检索的准确性和生成的灵活性,非常适合回答复杂问题,尤其是需要从外部文档或数据库中获得信息的场景。

  • 典型使用场景:

问答系统: 当需要回答涉及到外部知识库、文档或数据库中的具体信息时,RAG 可以先检索相关文档片段,再生成回答。例如,在医疗、法律、研究等领域,使用 RAG 可以保证提供的答案与权威文献一致。

  • 文档查询:

当用户想要获取与特定文档、论文或网站相关的详细信息时,RAG 可以先从大量文档中检索到相关片段,然后通过生成式模型输出整合的信息。
知识管理系统: 企业或机构内部可能拥有大量的非结构化数据,比如电子邮件、文档和笔记。RAG 可以帮助提取相关信息,生成详细的回答。

  • 优势:

基于最新数据: 能结合外部数据,提供更准确或实时的答案。
高效的长文本处理: 能处理长文档,进行内容的有效检索。

2. Function Calling
Function Calling 是通过调用特定函数或API来获取数据或执行操作的过程。OpenAI 的 Function Cal

### 大模型对话系统的实现方法技术架构 #### 1. 技术架构概述 大模型对话系统通常采用多种技术架构来满足不同的需求场景。常见的技术架构包括纯Prompt、Agent + Function CallingRAG(检索增强生成)、Fine-Tuning 基于多智能体的对话管理系统[^2]。 #### 2. 主要技术架构详解 ##### 2.1 纯Prompt 架构 在这种架构下,用户输入被转化为提示符(Prompt),并传递给预训练的语言模型进行推理。这种模式适合简单的问答任务或模拟对话环境下的交互。 ```python def generate_response(prompt, model): response = model.generate(text=prompt) return response.text prompt = "你好,今天天气怎么样?" response = generate_response(prompt, pretrained_model) print(response) ``` ##### 2.2 Agent + Function Calling 架构 此架构引入了一个代理(Agent)作为中间层,负责解析用户的意图并将请求分发到相应的功能模块。这种方式增强了系统的灵活性功能性。 ```json { "intent": "weather", "function_call": { "name": "get_weather", "arguments": "{\"location\": \"北京\"}" } } ``` ##### 2.3 RAG(检索增强生成) 通过结合外部知识库与生成模型的能力,RAG能够显著提升对话质量,尤其是在需要精准信息的任务中表现优异。 ```python from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True) model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever) input_dict = tokenizer.prepare_seq2seq_batch( ["纽约有多少人口?"], return_tensors="pt" ) outputs = model.generate(input_ids=input_dict["input_ids"]) generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] print(generated_text) ``` ##### 2.4 Fine-Tuning 架构 针对特定领域数据集微调通用大模型可以提高其在垂直领域的性能。这种方法适用于定制化程度较高的应用场合。 ```bash !pip install datasets transformers accelerate torch from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model = AutoModelForCausalLM.from_pretrained('gpt2') training_args = TrainingArguments(output_dir='./results', num_train_epochs=3, per_device_train_batch_size=4,) trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset,) trainer.train() ``` #### 3. 对话式推荐系统中的技术架构 对于更复杂的对话式推荐系统而言,除了上述提到的基础架构外,还需要考虑整个系统的整体设计。这类系统往往由多个子模块构成,例如语音识别、自然语言理解、对话管理以及最终的内容呈现等环节共同协作完成一次完整的用户体验流程[^3]。 #### 4. Multi-Agent 架构的应用 当涉及到更加复杂的服务场景时,则可能需要用到Multi-Agent体系结构,在这个框架里不同类型的Agents各自承担一部分职责并通过消息机制相互沟通协调从而达成目标[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值