时序分析(2) – 单根检验
上一篇文章我们探讨了时序数据的描述性分析和推断性分析。这一节我们主要讨论时序数据的平稳分析和单根检验。
首先我们先介绍平稳性的概念:
时序数据的平稳性属性是其非常重要的特征,上一篇中我们曾经估算指数数据的收益率、标准差、分布等,其实一切的目的都是为了很好的预测时序数据,但想想如果数据的均值和方差是经常有很大的变化的,我们又怎么能够预测呢?
平稳过程定义如下
- 时序的均值不能是时间的函数。
- 时序的方差不能是时间的函数。
- 时序的第i项与第i+m项的协方差不能是时间的函数。
简单来说,就是时序的均值、方差和自协方差这三个统计特性不能随着时间的变换而变化。
平稳时序相对来说是比较容易预测的,因为我们可以认为未来的统计特性和当前的统计特性是一致的。大部分时序模型都假设至少是协方差稳定的。但实际上,大多数金融时序数据都不是平稳时序数据,所以在实际时序分析时,我们经常需要通过某种方法将其转变为平稳过程。
那么,我们如何得知所要处理的时序数据是否平稳时序呢? 这就需要进行统计检验:单根检验。
单根检验(unit root test)就是检查时序数据是否存在单根,现在让我们简要解释一下这个概念:
考虑一个时序过程 { y t , t = 1 , 2 , 3... } \{y_t,t=1,2,3... \} {
yt,t=1,2,3...},如果可以把它写成一个 p p p阶自回归过程:
y t = a 1 y t − 1 + a 2 y t − 2 . . . + a p y t − p + ϵ t y_t=a_1y_{t-1}+a_2y_{t-2}...+a_py_{t-p}+ \epsilon_t yt=a1yt−1+a2yt−2...+apyt−p+ϵt
这里 { ϵ t , t = 0 , 1 , 2 , . . . } \{ \epsilon_t,t=0,1,2,...\} {
ϵt,t=0,1,2,...}, 是串行不相关的,且均值为0,有不变的方差