时序分析(2) -- 单根检验

本文介绍了时序数据的平稳性概念及其重要性,详细阐述了单根检验,包括Augmented Dickey-Fuller Testing、Dickey-Fuller GLS Testing、Phillips-Perron Testing、KPSS Testing和Variance Ratio Testing,并通过实例分析了四个金融时序(国内债卷、国内股票、国内货币、香港股票)的收益率数据,揭示了它们的平稳性特征。
摘要由CSDN通过智能技术生成

时序分析(2) – 单根检验

    上一篇文章我们探讨了时序数据的描述性分析和推断性分析。这一节我们主要讨论时序数据的平稳分析和单根检验

    首先我们先介绍平稳性的概念:
    时序数据的平稳性属性是其非常重要的特征,上一篇中我们曾经估算指数数据的收益率、标准差、分布等,其实一切的目的都是为了很好的预测时序数据,但想想如果数据的均值和方差是经常有很大的变化的,我们又怎么能够预测呢?
    平稳过程定义如下

  1. 时序的均值不能是时间的函数。
  2. 时序的方差不能是时间的函数。
  3. 时序的第i项与第i+m项的协方差不能是时间的函数。

    简单来说,就是时序的均值、方差和自协方差这三个统计特性不能随着时间的变换而变化。
    平稳时序相对来说是比较容易预测的,因为我们可以认为未来的统计特性和当前的统计特性是一致的。大部分时序模型都假设至少是协方差稳定的。但实际上,大多数金融时序数据都不是平稳时序数据,所以在实际时序分析时,我们经常需要通过某种方法将其转变为平稳过程。
    那么,我们如何得知所要处理的时序数据是否平稳时序呢? 这就需要进行统计检验:单根检验。
    单根检验(unit root test)就是检查时序数据是否存在单根,现在让我们简要解释一下这个概念:

考虑一个时序过程 { y t , t = 1 , 2 , 3... } \{y_t,t=1,2,3... \} { yt,t=1,2,3...},如果可以把它写成一个 p p p阶自回归过程:
y t = a 1 y t − 1 + a 2 y t − 2 . . . + a p y t − p + ϵ t y_t=a_1y_{t-1}+a_2y_{t-2}...+a_py_{t-p}+ \epsilon_t yt=a1yt1+a2yt2...+apytp+ϵt
这里 { ϵ t , t = 0 , 1 , 2 , . . . } \{ \epsilon_t,t=0,1,2,...\} { ϵt,t=0,1,2,...}, 是串行不相关的,且均值为0,有不变的方差

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值