ORB-SLAM2(代码详解),特征提取与描述(ORBextractor):图像金字塔的计算

本文深入解析ORB-SLAM2中ORBextractor的ComputePyramid部分,探讨如何计算图像金字塔,为FAST关键点检测提供不同分辨率的支持。内容涉及Size类、cvRound函数、Rect类、resize函数和copyMakeBorder函数的使用,以及图像缩放和边界拓展的原理。
摘要由CSDN通过智能技术生成

ORB-SLAM2,其实有很多大牛已将代码分析的很彻底了,在此写下博客以加深印象,会将自己收集的资料尽量集中在这里

本文主要讲ORBextractor中的ComputePyramid()部分,在获取目标图像后计算图像金字塔(nlevels张不同分辨率的图片),为FAST关键点在各层上的计算提供支持。本文涉及到的一些尺度参数参见ORBextractor()构造函数进行的参数计算部分。

//计算图像金字塔,按一定的尺度比例获取nlevels张分辨率不同的图像
void ORBextractor::ComputePyramid(cv::Mat image)
{
	/**
	//在同一个图像金字塔中,两个参数只是图像相邻层比较时上下或者下上的区别
	std::vector<float> mvScaleFactor;          //是用来存储金字塔中每层图像对应的尺度因子的vector变量
    std::vector<float> mvInvScaleFactor;       //可以理解为逆向尺度
    **/
	for (int level = 0; level < nlevels; ++level)
    {
        float scale = mvInvScaleFactor[level];
        //原图像的尺寸
        Size sz(cvRound((float)image.cols*scale), cvRound((float)image.rows*scale));
        //相当于给原图像加边,在计算关键点时便不需要检测所加边缘,又能保证原图像边缘的关键点也能检测
        Size wholeSize(sz.width + EDGE_THRESHOLD*2, sz.height + EDGE_THRESHOLD*2);
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值