python处理期望产出与非期望产出(SBM model)

Data envelopment analysis


前几日忙着玩,今天来更新了。也差不多是时候开始期末复习了,更新的速度可能比较慢。本人的研究方向是DEA做能源经济。今天听导师说,cplex软件更强大,哈哈感觉gurobi都有点不香了。

前言

相较于往常的DEA模型,他有一个明显的区别。就是对于环境而言,把产出分成了期望产出(desirable outputs)和非期望产出(undesirable outputs)。

一般来说,我们都是想要更多的产出,更少的投入,那么对于这环境问题,我们想要的便是:更多的期望产出,更少的非期望产出。

这篇文章都是建立在基础模型SBM这个非径向(non-radial)模型上的,并且规模报酬是constant returns to scale。

模型

part 1

第一种情况,是期望产出与非期望产出之间是能准确分离开来的,也就是所用到的变量是:
在这里插入图片描述
那么其模型为:
在这里插入图片描述

若是为了反映决策者的偏好,可以对上述模型加权重,那么此时的目标函数就会变成:

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值