【AI知识点】词频-逆文档频率(TF-IDF)

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】


词频-逆文档频率TF-IDF,Term Frequency-Inverse Document Frequency)是一种用来衡量一个词在某个文档中的重要性,同时结合该词在整个文档集中的出现频率。它的核心思想是:在特定文档中出现频率高且在其他文档中较少出现的词会被赋予更高的权重,而那些在所有文档中普遍出现的词则会被削弱。

1. 词频(TF)

词频(Term Frequency,TF)表示某个词在文档中的出现频率,用来衡量该词在该文档中的相对重要性。它的计算公式为:

T F ( t , d ) = 词  t  在文档  d  中出现的次数 文档  d  中所有词的总数 TF(t, d) = \frac{\text{词} \ t \ \text{在文档} \ d \ \text{中出现的次数}}{\text{文档} \ d \ \text{中所有词的总数}} TF(t,d)=文档 d 中所有词的总数 t 在文档 d 中出现的次数

其中:

  • t t t 表示某个词。
  • d d d 表示某个文档。

词频的值范围为 [ 0 , 1 ] [0, 1] [0,1],即表示该词在该文档中出现的频率比例。


2. 逆文档频率(IDF)

逆文档频率(Inverse Document Frequency,IDF)用来衡量一个词在整个文档集中出现的稀有程度。如果一个词在很多文档中出现,则该词的IDF值较低,因为它对区分文档的贡献较小。IDF的公式为:

I D F ( t ) = log ⁡ ( M

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值