统计信号处理基础 习题解答10-11

题目

我们希望根据一个人的身高来估计他的体重。为了判断其可行性,对N=100个人取数据,产生有序的数据对(h,w),其中h代表身高,w代表体重。得到的数据如图10.9(a)所示的。解释你如何利用MMSE估计量根据一个人的身高来猜测他的体重。对于这些数据的建模有些什么样的假设?接下来,对很遥远的行星上的人进行同样的实验,得到的数据如图10.9(b)所示。现在体重的MMSE 估计量将是什么?


解答 

MMSE估计量的本质是利用了两个随机变量之间的相关性。

问题是书本上关于二维高斯分布的恒定概率密度的等值线是椭圆没有解释。

下面分两种方法给出解释:

方法一:多维高斯分布概率密度推导

D维高斯分布的一般形式:

其中,是D*1维列向量:

上述随机变量的方差定义为:,即:

是D*D维协方差矩阵,定义为:

其中,每个元素为:

特别的,当时:

如果我们定义相关系数:

显然,根据定义,我们可以得到:

那么可以得到:

也就是可以表示为:

配合性质,我们可以发现是对称矩阵,即.

 特别的,当D=2时,我们可以得到

此时,直接令,因此,根据行列式计算,得到此时:

同时,2*2方阵逆矩阵性质

(参考线性代数考研笔记(二)_2x2矩阵的逆矩阵口诀-CSDN博客

因子,最终:

上述公式取不同的恒定数值,就可以得到概率密度的等值线,例如:

也就是:

显然,上式是椭圆的一般方程。

下面进行典型图形的画图验证:

1. 独立,且标准正态分布:

此时通过matlab作图,可以得到独立分布下的概率密度等值线,此时是正的标准圆。

 

 

2. 独立,中心平移:

此时可以发现,仅仅是中心发生了平移,但是还是标准正圆。

 

3. 独立,中心不平移,标准差不相等:,

 此时标准圆已经变化成为椭圆,但还是正的椭圆

 

4. 非独立,中心不平移,标准差相等:

此时,也变为了椭圆,且椭圆发生了旋转。

通过上述直观分析,我们可以发现:

为等值线的值。当两个随机变量不相关,且标准差相等时,等值线应该是圆。

当两个随机变量不相关,但标准差不相等,等值线是椭圆,且椭圆没有发生旋转。

当两个随机变量相关,那么等值线是椭圆,且椭圆发生了旋转。

最后,我们将上述等值线,运用到概率密度上,也就是令:

其中,,我们分别作出的等值线,都是椭圆。

 

方法二:马氏距离法

马氏距离可以参考:

马氏距离详解(数学原理、适用场景、应用示例代码)-CSDN博客

B站白板推导系列笔记——高斯分布——等概率线椭圆_椭圆高斯分布-CSDN博客

马氏距离为:

由谱分析可以得到可以分解成:

其中特征值对应的对角矩阵,因此进一步:

特别的,当D=2时,我们可以得到

那么

如果定义:

根据向量维度和乘法,可以得到都是标量,因此:

更为一般的,可以得到:

上述关于的椭圆方程,经过三步操作:

:中心化(centralize)

:旋转(rotate)

:缩放(scale)

最终变成标准圆。

 

最后,回到题目,显然,(a)图关于地球上人的数据来说,随机变量w和h是相关的,因此,可以用公式(10.20)进行估计,即:

观察上述估计量的形式,本质上是概率域的最小二乘形式。

(b)图关于遥远星球上人的数据来说,不管的取值,的取值分布没有影响,因此大致可以判断w和h是不相关的,也就是:,因此此时:

也就是此时MMSE没办法通过两个随机变量的相关性,更加有效的估计

Matlab作图代码

clc, clear, close all;
syms x1 x2
delta1=1;
delta2=1;
u1=0;
u2=0;
ru=0.5;

circle=1/(1-ru^2)*(((x1-u1)/delta1)^2-ru*((x1-u1)/delta1)*((x2-u2)/delta2)+((x2-u2)/delta2)^2);

figure(1)
fimplicit(circle==1,'Linewidth', 2)
legend('show','Location','best')


figure(2)
delta1=1;
delta2=2;
u1=1;
u2=1;
ru=0.5;
circle=1/(1-ru^2)*(((x1-u1)/delta1)^2-ru*((x1-u1)/delta1)*((x2-u2)/delta2)+((x2-u2)/delta2)^2);
fimplicit(1/(2*pi*delta1*delta2*sqrt(1-ru^2))*exp(-0.5*circle)==0.01,'Linewidth', 2)
hold on
fimplicit(1/(2*pi*delta1*delta2*sqrt(1-ru^2))*exp(-0.5*circle)==0.03, '--or')
fimplicit(1/(2*pi*delta1*delta2*sqrt(1-ru^2))*exp(-0.5*circle)==0.05, '-.*c')
hold off

### 回答1: 统计信号处理是一门研究如何从不完全或有噪声干扰的观测数据中推断出所关心的信息的学科。它主要涉及概率统计、数学建模和数字信号处理等领域的知识。 在统计信号处理中,我们通过对信号进行采样并进行数学建模,可以对信号的统计特性进行分析和估计,并利用统计模型来推断信号的未知参数。这些统计特性包括信号的均值、方差、自相关、功率谱等。通过对这些特性的研究,我们可以了解信号在统计意义上的性质,从而能够更好地理解信号中的信息内容。 统计信号处理广泛应用于许多领域,如通信、雷达、生物医学工程、金融等。在通信系统中,我们可以利用统计信号处理技术来提高信号的传输质量和抗干扰能力;在雷达系统中,我们可以利用统计信号处理技术来实现目标检测和跟踪;在生物医学工程中,我们可以利用统计信号处理技术来分析和诊断生理信号,如心电图、脑电图等。 叶中付csdn的博客中,他分享了关于统计信号处理的一些答案和观点。通过他的分享,读者可以深入了解统计信号处理的原理和应用,了解相关的数学模型和算法。同时,叶中付csdn还提供了一些实际的案例和代码实现,让读者能够更好地理解和应用统计信号处理技术。 总之,统计信号处理是一门重要的学科,它在许多领域都有着广泛的应用。通过对信号的统计特性进行分析和推断,我们可以更好地理解和利用信号中的信息内容。叶中付csdn的博客是一个不错的学习资源,可以帮助读者更好地理解统计信号处理的原理和应用。 ### 回答2: 统计信号处理是一门关注随机信号的概率分布以及对这些信号的分析和处理的学科。叶中付在CSND上的统计信号处理答案是非常值得参考的。 首先,叶中付在CSND上提供了关于统计信号处理基础知识和理论方面的答案。他对于随机变量、概率密度函数以及随机信号的特性进行了深入的解释和分析,使读者能够对统计信号处理的基本概念有一个清晰的认识。 其次,叶中付的答案还涉及到了统计信号处理中常用的一些方法和技术。例如,他介绍了常见的随机变量矩的定义和计算方法,并通过具体的例子说明了如何使用矩来描述随机信号的特征。此外,他还讨论了相关、自相关和功率谱等在统计信号处理中常用的分析工具,给出了其计算公式和使用方法,并通过实例进行了详细解读。 另外,叶中付还在答案中分享了一些实际应用中的案例和经验。他提到了统计信号处理在雷达信号处理、图像处理和语音信号处理等领域的应用,并介绍了一些常用的处理方法和技巧。这些案例和经验的分享对于读者来说非常有价值,可以帮助他们更好地理解和应用统计信号处理的知识。 总的来说,叶中付在CSND上的统计信号处理答案提供了丰富的知识和实践经验,对于学习和应用统计信号处理的读者来说是一份很好的参考材料。无论是对于理论基础的理解,还是对于方法和技术的掌握,这些答案都能帮助读者提升自己的能力,并在实际应用中取得更好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值