首先列出结论
∫
0
π
2
sin
2
n
+
1
(
x
)
d
x
=
(
2
k
)
!
!
(
2
k
+
1
)
!
!
\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^{2n+1}(x) dx=\frac{(2k)!!}{(2k+1)!!}
∫02πsin2n+1(x)dx=(2k+1)!!(2k)!!
∫
0
π
2
sin
2
n
(
x
)
d
x
=
(
2
k
−
1
)
!
!
(
2
k
)
!
!
∗
π
2
\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^{2n}(x) dx=\frac{(2k-1)!!}{(2k)!!}*\frac{\pi}{2}
∫02πsin2n(x)dx=(2k)!!(2k−1)!!∗2π
证明:
设
I
n
=
∫
0
π
2
sin
n
(
x
)
d
x
I_n = \displaystyle \int_{0}^{\frac{\pi}{2}} \sin^n(x) dx
In=∫02πsinn(x)dx.
I n = ∫ 0 π 2 sin n − 1 ( x ) d ( − cos ( x ) ) = − sin n − 1 ( x ) cos ( x ) ∣ 0 π 2 + ∫ 0 π 2 ( n − 1 ) sin n − 2 ( x ) cos 2 ( x ) d x I_n = \displaystyle \int_{0}^{\frac{\pi}{2}} \sin^{n-1}(x) d(-\cos(x)) = -\sin^{n-1}(x) \cos(x) |_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} (n-1) \sin^{n-2}(x) \cos^2(x) dx In=∫02πsinn−1(x)d(−cos(x))=−sinn−1(x)cos(x)∣02π+∫02π(n−1)sinn−2(x)cos2(x)dx
= 0 + ∫ 0 π 2 ( n − 1 ) sin n − 2 ( x ) ( 1 − sin 2 ( x ) ) d x =0+\int_{0}^{\frac{\pi}{2}} (n-1) \sin^{n-2}(x) (1 - \sin^2(x))dx =0+∫02π(n−1)sinn−2(x)(1−sin2(x))dx
=
(
n
−
1
)
(
∫
0
π
2
sin
n
−
2
(
x
)
d
x
−
∫
0
π
2
sin
n
(
x
)
d
x
)
=
(
n
−
1
)
I
n
−
2
−
(
n
−
1
)
I
n
=(n-1) \left(\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^{n-2}(x) dx - \int_{0}^{\frac{\pi}{2}} \sin^{n}(x) dx \right) = (n-1) I_{n-2} - (n-1) I_n
=(n−1)(∫02πsinn−2(x)dx−∫02πsinn(x)dx)=(n−1)In−2−(n−1)In
所以
I
n
=
n
−
1
n
I
n
−
2
I_n = \frac{n-1}{n}I_{n-2}
In=nn−1In−2
故:
I
2
k
+
1
=
2
k
2
k
+
1
2
k
−
2
2
k
−
1
⋯
2
3
I
1
=
(
2
k
)
!
!
(
2
k
+
1
)
!
!
I
1
I_{2k+1} = \frac{2k}{2k+1}\frac{2k-2}{2k-1} \cdots \frac{2}{3} I_1=\frac{(2k)!!}{(2k+1)!!}I_1
I2k+1=2k+12k2k−12k−2⋯32I1=(2k+1)!!(2k)!!I1
I
2
k
=
2
k
−
1
2
k
2
k
−
3
2
k
−
2
⋯
1
2
I
0
=
(
2
k
−
1
)
!
!
(
2
k
)
!
!
I
0
I_{2k} = \frac{2k-1}{2k}\frac{2k-3}{2k-2} \cdots \frac{1}{2} I_0=\frac{(2k-1)!!}{(2k)!!}I_0
I2k=2k2k−12k−22k−3⋯21I0=(2k)!!(2k−1)!!I0
其中易计算得
I
1
=
1
I_1=1
I1=1
I
0
=
π
2
I_0=\frac{\pi}{2}
I0=2π