sin^k(x)的积分

本文详细证明了积分公式:∫0π2sin⁡2n+1(x)dx=(2k)!!(2k+1)!!和∫0π2sin⁡2n(x)dx=(2k−1)!!(2k)!!∗π2。通过数学归纳法和巧妙的三角变换,推导出In=n−1nIn−2的关系,最终得到结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先列出结论
∫ 0 π 2 sin ⁡ 2 n + 1 ( x ) d x = ( 2 k ) ! ! ( 2 k + 1 ) ! ! \displaystyle \int_{0}^{\frac{\pi}{2}} \sin^{2n+1}(x) dx=\frac{(2k)!!}{(2k+1)!!} 02πsin2n+1(x)dx=(2k+1)!!(2k)!!

∫ 0 π 2 sin ⁡ 2 n ( x ) d x = ( 2 k − 1 ) ! ! ( 2 k ) ! ! ∗ π 2 \displaystyle \int_{0}^{\frac{\pi}{2}} \sin^{2n}(x) dx=\frac{(2k-1)!!}{(2k)!!}*\frac{\pi}{2} 02πsin2n(x)dx=(2k)!!(2k1)!!2π
证明:
I n = ∫ 0 π 2 sin ⁡ n ( x ) d x I_n = \displaystyle \int_{0}^{\frac{\pi}{2}} \sin^n(x) dx In=02πsinn(x)dx.

I n = ∫ 0 π 2 sin ⁡ n − 1 ( x ) d ( − cos ⁡ ( x ) ) = − sin ⁡ n − 1 ( x ) cos ⁡ ( x ) ∣ 0 π 2 + ∫ 0 π 2 ( n − 1 ) sin ⁡ n − 2 ( x ) cos ⁡ 2 ( x ) d x I_n = \displaystyle \int_{0}^{\frac{\pi}{2}} \sin^{n-1}(x) d(-\cos(x)) = -\sin^{n-1}(x) \cos(x) |_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} (n-1) \sin^{n-2}(x) \cos^2(x) dx In=02πsinn1(x)d(cos(x))=sinn1(x)cos(x)02π+02π(n1)sinn2(x)cos2(x)dx

= 0 + ∫ 0 π 2 ( n − 1 ) sin ⁡ n − 2 ( x ) ( 1 − sin ⁡ 2 ( x ) ) d x =0+\int_{0}^{\frac{\pi}{2}} (n-1) \sin^{n-2}(x) (1 - \sin^2(x))dx =0+02π(n1)sinn2(x)(1sin2(x))dx

= ( n − 1 ) ( ∫ 0 π 2 sin ⁡ n − 2 ( x ) d x − ∫ 0 π 2 sin ⁡ n ( x ) d x ) = ( n − 1 ) I n − 2 − ( n − 1 ) I n =(n-1) \left(\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^{n-2}(x) dx - \int_{0}^{\frac{\pi}{2}} \sin^{n}(x) dx \right) = (n-1) I_{n-2} - (n-1) I_n =(n1)(02πsinn2(x)dx02πsinn(x)dx)=(n1)In2(n1)In
所以
I n = n − 1 n I n − 2 I_n = \frac{n-1}{n}I_{n-2} In=nn1In2
故:
I 2 k + 1 = 2 k 2 k + 1 2 k − 2 2 k − 1 ⋯ 2 3 I 1 = ( 2 k ) ! ! ( 2 k + 1 ) ! ! I 1 I_{2k+1} = \frac{2k}{2k+1}\frac{2k-2}{2k-1} \cdots \frac{2}{3} I_1=\frac{(2k)!!}{(2k+1)!!}I_1 I2k+1=2k+12k2k12k232I1=(2k+1)!!(2k)!!I1

I 2 k = 2 k − 1 2 k 2 k − 3 2 k − 2 ⋯ 1 2 I 0 = ( 2 k − 1 ) ! ! ( 2 k ) ! ! I 0 I_{2k} = \frac{2k-1}{2k}\frac{2k-3}{2k-2} \cdots \frac{1}{2} I_0=\frac{(2k-1)!!}{(2k)!!}I_0 I2k=2k2k12k22k321I0=(2k)!!(2k1)!!I0
其中易计算得
I 1 = 1 I_1=1 I1=1
I 0 = π 2 I_0=\frac{\pi}{2} I0=2π

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值