图形学学习笔记0:线性代数复习

本文介绍了计算机图形学中的基础知识,包括向量的模、加减法、点乘和叉乘,以及矩阵在变换中的应用。点乘用于计算夹角和投影,叉乘用于判定左右和内外关系,而矩阵乘法是进行坐标变换的基础。这些概念在图形学和游戏开发中至关重要。
摘要由CSDN通过智能技术生成

开始学习计算机图形学相关知识,简单做一个学习记录

基础知识复习:个人理解图形学类似于CV的一种逆向,依赖于线性代数和部分物理学知识

注,参考GAMES101,图形学中向量默认是列向量

向量运算:

求模:类勾股定理,即分量平方和的根

加减法:平行四边形法则/三角形法则

点乘(dot product):如图,快速求夹角 对于单位向量来说点乘结果就是夹角的余弦值

实际运算就是对应元素相乘再加起来

也可以用于计算某一个向量在另一个向量方向上的投影(其中cos的值由点乘得到)

点乘还可以算出两个向量方向的接近程度以及是否大致在同一方向,如图:

(cos的值越趋近于1说明方向基本一致 接近垂直则趋近于0 再远到相反则趋近于-1)

叉乘(cross product)

a向量与b向量叉乘得到的是一个向量,得出的向量与参与的两个向量都要垂直,即和ab所在平面垂直

向量大小为图中所示,方向则由右手定则(螺旋)决定:四指指向a旋转到b的方向,他们两个叉乘得到的向量方向就是拇指指向的方向

由此可得叉乘不满足交换律,得到的向量方向相反,如图:

如图,在构造坐标系时非常有用(若x叉乘y得到z是右手系,得到-z则是左手系)

叉乘的结果是一个向量,也可写成矩阵形式,如图:

也可以按照行列式展开方便记忆,如图

叉乘在图形学中的作用:

①判定左右关系 ab同一平面,(相对于坐标轴)叉乘是正的就是b在a左面,否则右面

②判定内外关系,如图,依次分别叉乘ABAP,BCBP,CACP来判断点P是否在三角形内部,如都在同一侧则可以判断P在内部,这是光栅化的基础

矩阵:

用于变换。m行n列的数列,未引入齐次坐标时,任何一个矩阵作用的含义其实都是旋转和缩放的结合

最有用和困难的操作:矩阵乘法 如图,前的列数必须等于后的行数

对应行列的乘积加起来是新矩阵的对应位置元素:

性质:没有交换律 一般AB≠BA 但是有结合律和分配律

变换:将向量看作是只有一列的矩阵 向量和矩阵相乘是变换的基础,如

转置:

单位矩阵:是一个对角阵(只有对角线有非0元素)一般用来定义逆矩阵,都是一些线性代数基础

向量的点乘和叉乘也能写成矩阵相乘形式:

应用:相机运动的坐标变换等

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值