矩阵核与像的性质讨论

文章目录

定义

对矩阵 A ∈ C n → C m \boldsymbol A \in \mathbb C^n \rightarrow \mathbb C^m ACnCm
矩阵的核(kernel): ker A = Set of all  x ∈ C n  such that  A x = 0 \text {ker} \boldsymbol A = \text{Set of all } \boldsymbol x \in \mathbb C^n \text{ such that } \boldsymbol {Ax}= \boldsymbol 0 kerA=Set of all xCn such that Ax=0
矩阵的像(image/range): range A = Set of all vectors in  C m  which are  A x  for x ∈ C n \text {range} \boldsymbol A = \text{Set of all vectors in } \mathbb C^m \text{ which are } \boldsymbol {Ax} \text{ for} \boldsymbol x \in \mathbb C^n rangeA=Set of all vectors in Cm which are Ax forxCn

性质

(1) ( range A ) ⊥ = ker A H {\left ( \text {range} \boldsymbol A \right )}^{\bot} = \text{ker} \boldsymbol A^H (rangeA)=kerAH
证明: x ∈ ( range  A ) ⊥ ⟺ < x , A y > = 0 ⟺ < A H x , y > = 0   ∀ y ⟺ A H x = 0 \boldsymbol x \in (\text {range } \boldsymbol A )^{\bot} \Longleftrightarrow <\boldsymbol x,\boldsymbol A \boldsymbol y>=0 \Longleftrightarrow <\boldsymbol A^H \boldsymbol x,\boldsymbol y>=0 \ \forall \boldsymbol y \Longleftrightarrow \boldsymbol A^H \boldsymbol x=0 x(range A)<x,Ay>=0<AHx,y>=0 yAHx=0
(2) ( ker A ) ⊥ = range A H {\left ( \text {ker} \boldsymbol A \right )}^{\bot} = \text{range} \boldsymbol A^H (kerA)=rangeAH
证明: ( range A H ) ⊥ = ker A ⟹ ( range A H ) ⊥ ⊥ = ( ker A ) ⊥ ⟺ ( range A H ) = ( ker A ) ⊥ {\left ( \text {range} \boldsymbol A^H \right )}^{\bot} = \text{ker} \boldsymbol A \Longrightarrow ( \text {range} \boldsymbol A^H)^{\bot \bot} = { (\text {ker} \boldsymbol A) }^{\bot} \Longleftrightarrow ( \text {range} \boldsymbol A^H)^{} = { (\text {ker} \boldsymbol A) }^{\bot} (rangeAH)=kerA(rangeAH)=(kerA)(rangeAH)=(kerA)
(3) 若矩阵 A ∈ R m × n \boldsymbol A \in \mathbb R^{m \times n} ARm×n列满秩(即线性映射: R n → R m \mathbb R^{n} \rightarrow \mathbb R^{m} RnRm为单射),则 range ( A ) = range ( A ( A T A ) − 1 A T ) \text {range} (\boldsymbol A) = \text{range} \left( {\boldsymbol A (\boldsymbol A^T \boldsymbol A)^{-1} \boldsymbol A^T} \right ) range(A)=range(A(ATA)1AT)
证明:要证等式成立,只需证 ( A T A ) − 1 A T (\boldsymbol A^T \boldsymbol A)^{-1} \boldsymbol A^T (ATA)1AT的线性映射: R m → R n \mathbb R^{m} \rightarrow \mathbb R^{n} RmRn为满射。因为
A x = y ∈ range ( A ) ,   ∀ x ⟹ x = ( A T A ) − 1 A T y , ∀ x \boldsymbol A \boldsymbol x = \boldsymbol y \in \text{range}(\boldsymbol A), \ \forall \boldsymbol x \\ \Longrightarrow \boldsymbol x = (\boldsymbol A^T \boldsymbol A)^{-1} \boldsymbol A^T \boldsymbol y, \forall \boldsymbol x Ax=yrange(A), xx=(ATA)1ATy,x

因此 ( A T A ) − 1 A T (\boldsymbol A^T \boldsymbol A)^{-1} \boldsymbol A^T (ATA)1AT的线性映射为满射,因此 range ( A ) = range ( A ( A T A ) − 1 A T ) \text {range} (\boldsymbol A) = \text{range} \left( {\boldsymbol A (\boldsymbol A^T \boldsymbol A)^{-1} \boldsymbol A^T} \right ) range(A)=range(A(ATA)1AT)

(4) 对一般的矩阵 A ∈ R m × n \boldsymbol A \in \mathbb R^{m \times n} ARm×n rank ( A ) = r \text{rank}(\boldsymbol A)=r rank(A)=r A \boldsymbol A A的奇异值分解为: A = U Σ V T \boldsymbol A=\boldsymbol U \boldsymbol {\Sigma} \boldsymbol V^T A=UΣVT,其中, U ∈ R m × r ,   Σ ∈ R r × r ,   V ∈ R n × r \boldsymbol U \in \mathbb R^{m \times r}, \ \boldsymbol {\Sigma} \in \mathbb R^{r \times r}, \ \boldsymbol V \in \mathbb R^{n \times r} URm×r, ΣRr×r, VRn×r,则 range ( A ) = range ( U ) = range ( U U T ) \text{range}(\boldsymbol A)=\text{range}(\boldsymbol U)=\text{range}(\boldsymbol U \boldsymbol U^T) range(A)=range(U)=range(UUT)
证明:
A = U Σ V T ⟹ A T = V Σ U T ⟹ ker ( A T ) = range ( U ) ⊥ = ker ( U T ) = ker ( U U T ) ⟹ range ( A ) = range ( U ) = range ( U U T ) \boldsymbol A=\boldsymbol U \boldsymbol {\Sigma} \boldsymbol V^T \\ \Longrightarrow \boldsymbol A^T=\boldsymbol V \boldsymbol {\Sigma} \boldsymbol U^T \\ \Longrightarrow \text{ker}(\boldsymbol A^T)=\text{range}(\boldsymbol U)^{\bot}=\text{ker}(\boldsymbol U^T)=\text{ker}(\boldsymbol U \boldsymbol U^T) \\ \Longrightarrow \text{range}(\boldsymbol A) = \text{range}(\boldsymbol U) = \text{range}(\boldsymbol U \boldsymbol U^T) A=UΣVTAT=VΣUTker(AT)=range(U)=ker(UT)=ker(UUT)range(A)=range(U)=range(UUT)

补充: U U T \boldsymbol U \boldsymbol U^T UUT把奇异对角阵理解为单位阵,因此其秩也为 r r r

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值