Apollo课程学习1——无人驾驶与Apollo平台概述

学习前言

学到进阶课程啦,撒花!今天的学习内容是自动驾驶行业概述。

全球出行的大趋势

  • 共享出行(Car Sharing)。因为汽车的利用率不高,且停车位占据了很多城市空间。

  • 新能源汽车(Clean Energy)。近年来,新能源产业迅速蓬勃发展,新能源汽车也是中国重要的发展趋势和方向。

  • 自动驾驶(Autonomous Driving)。在无人驾驶技术发展成熟的时候,无人驾驶会比人类驾驶更加安全,还可减少道路的拥堵。但目前无人驾驶技术的发展还有很长一段路要走。

无人驾驶发展简史


无人驾驶不仅是金融投资的热点领域,也是一个很有价值的行业,并且急需人才。无人驾驶行业正由无序走向有序,由幼稚走向成熟。在开发者们的职业生涯中,无人驾驶技术的普及极有可能成为现实。


自动驾驶产业图谱

无人驾驶的级别

根据美国汽车工程师学会(Society of Automotive Engineers,简称SAE对自动驾驶行业的分级标准,包括五个等级。

级别名称特点产品代表
Level 1Adaptive Cruise Control巡航装置可以纵向控制车辆,可以加速减速
Level 2Lane Keeping系统可以纵向控制、横向控制汽车,但车是辅助,人才是主导Tesla
Level 3Lane Change某一时段是责任主体奥迪A8
level 4Driveless大部分时间来做主导Waymo
level 5Driveless驾驶几乎与人类没有关系,没有方向盘和脚踏板

无人驾驶的安全

一、ISO-26262

1、ISO-26262概述

ISO-26262是一个非常复杂、非常结构化的标准。如果一个硬件达到了ASIL D级别的要求,那么它的故障率是10 fit ,即10亿个小时里面出一次故障,这个故障率比windows蓝屏的概率低很多。

  • Safety
    • Systematic Faults 系统性故障:设计汽车的时候就存在的缺陷。
    • Random Faults随机故障:由不可控的因素造成的故障,不一定会出现。
  • Security:涉及的不是车自身的问题,而是系统被黑客攻占了。

ISO-26262是一个行业规范而不是一个例法,代表了汽车行业在安全方面可以做到的极限,在汽车行业有很高的威望。

2、ISO-26262的认证

对于判断一个问题的严重性,ISO-26262给了三个判断标准:

  • Separately:判断车和人分离,出事故后有多少概率会造成人员伤亡。
  • Exposure:判断这件事情是否常见。
  • Controllable:判断车出现了问题,驾驶员是否有机会接管。

ISO-26262的认证过程是一个“V型”,通过ISO-26262的认证是一个特别慎重的流程。

  • High Level层级:首先看开发环境。
  • Function层级:分析问题的等级,判断这个问题出现的概率。
  • Technique层级:考虑这个问题具体解决方案。软件硬件确保了安全性后,再返回往上去做验证。

3、ISO-26262的优缺点

  • 优点:ISO-26262是对技术的一个引导,会使车更加安全;有很高的商业附加值;涉及法律中权责的问题,适合打官司
  • 缺点:认证过程很繁杂,不符合敏捷开发的需求;ISO-26262只覆盖Safety,不覆盖Security,而无人驾驶必须考虑security。

二、自动驾驶的研发流程

  • 软件在环:在软件系统里仿真模拟出真实的道路环境,代码开发完毕后首先测试是否可以实现目标。
  • 硬件在环:将所有的仿真结果与传感器、计算单元集合在一起,在硬件环境里测试。
  • 车辆在环:在一个封闭环境中(没有交通流的干扰)测试开发者所开发功能。
  • 司机在环:基于实际道路,研究人—车—路—交通四者之间的相互作用。

按照以上的流程研发能够保证自动驾驶足够的安全性。

自动驾驶汽车的硬件系统

一、硬件系统概述

自动驾驶分为三大系统:感知、决策和控制,每个系统里有对应的硬件系统,如下图所示。

二、传感器的安装位置

传感器种类考虑的因素安装位置
激光雷达360°旋转车顶
毫米波雷达指向性很强前后保险杠上
组合导航车身在道路上的俯仰和姿态的干扰两个后车轮的中轴线上
摄像头车身的360°

三、自动驾驶的计算单元

  • 设计要求:需要考量整体的车规、电磁干扰和振动方面的设计以及ISO-26262标准的要求。所有的CPU、GPU、FPGA、MCU和总线都要做冗余设计,以防止单点故障。
  • 目前架构:都是集中式的架构,即将所有的工作都放到一个工控机当中。
    • 优点:方便代码的快速迭代,工控机卡槽的设计方便硬件更新和扩展。
    • 缺点:体积大、功耗高,不适应未来的量产 。

  • 未来发展方案①:未来将会考虑嵌入式的方案,将各传感器的原始数据先融合到一个Sensor Box中,完成时间戳的同步,然后将融合后的数据给到后端计算平台处理。
    • 优点:将原来集中式计算的功能拆解出来,可以降低整体系统的功耗。
    • 缺点:不足以面向更多的量产化。

四、自动驾驶的线控系统

自动驾驶线控系统(control by wire)指的是汽车的控制是由一些简单命令完成的,而不是由物理操作完成的。线控系统主要分为三大部分:减速控制、转向控制和加速控制,传统汽车的这些控制由液压系统和真空助力泵协助完成,自动驾驶汽车的线控需要用电控化的零部件来完成。

  • 大陆制动(MK C1+MK100):从原理图上来看,大陆制动的所有的供电、执行、线路和管路图都是双备份的,极大地提高安全性。但是该系统只适用于乘用车,像卡车、客车等商用车都是通过气刹系统制动的。

  • EPS(电子助力转向系统):直接使用转向管柱与下面的齿条相结合,没有采用电控制。如英菲尼迪Q50的转向系统中,由离合器进行转向管柱的截断,当车辆启动时离合器松开,所有的自动驾驶指令都通过ECU(电子控制元件)发送控制指令到下端两个转向电机上,进行转向控制。

  • 线控油门(燃油车):控制自动驾驶车辆的加速度。减速刹车踏板上有位置传感器可检测到刹车深浅度,该传感器传送指令到EMS(发动机制动系统)后,气门进气量越多,加速度即越大。

  • 新能源车:通过驱动电机的扭力控制来完成对加速度的控制,从整个线控化来看,分为三个阶段:

Apollo

一、Apollo平台

Apollo是一个开放的无人驾驶平台(生态系统)。

  • Open Capability(开放能力)
  • Shared Resources(共享资源)
  • Accelerated Innovation(加速创新)
  • Sustained Mutaul Benefit(持续共赢)

二、Apollo平台技术框架

  • 线控车辆平台(Reference Vehicle Platform)
  • 参考硬件平台(Reference Hardware Platform)
  • 软件开放平台(Open Software Platform)
  • 云端服务平台(Cloud Service Platform)



### YOLOApollo在计算机视觉及自动驾驶框架中的比较 #### 自动驾驶技术概述 自动驾驶车辆依赖于多种传感器数据处理和决策算法来实现安全导航。这些系统通常集成了感知、规划以及控制模块,其中计算机视觉扮演着至关重要的角色。 #### 计算机视觉的作用 对于自动驾驶而言,计算机视觉主要用于环境理解,即通过摄像头获取图像并从中提取有用的信息。这涉及到物体检测、分类、跟踪等多个方面的工作[^1]。 #### YOLO简介 YOLO (You Only Look Once) 是一种实时目标检测模型,在单次推理过程中完成边界框预测和类别概率估计的任务。该方法以其高效性和准确性著称,特别适合应用于需要快速响应的应用场景中,比如交通标志识别或行人监测等任务上[^4]。 ```python import torch from models.experimental import attempt_load model = attempt_load('yolov5s.pt', map_location=torch.device('cpu')) img = 'data/images/bus.jpg' # 图片路径 results = model(img) ``` #### Apollo平台介绍 百度开发的Apollo是一个开放式的软件平台,旨在加速无人驾驶汽车的研发进程。它不仅提供了丰富的API接口供开发者调用,还包含了完整的工具链支持整个研发周期内的各项活动——从仿真测试到实际道路验证均有所涉及[^2]。 #### 关系分析 虽然两者都属于支撑自动驾驶的关键组件之一,但是它们的功能定位有所不同: - **功能侧重点** - YOLO专注于解决特定类型的子问题,即如何有效地从输入图片中找出感兴趣的对象; - 而Apollo则更像是一套综合性解决方案,覆盖了从底层硬件抽象层一直到高层应用逻辑设计在内的广泛领域。 - **集成方式** - 在某些情况下,YOLO这样的专用AI模型可能会被嵌入到类似于Apollo的大规模系统架构当中作为其组成部分之一,用于增强系统的感知能力; 因此可以说,YOLO更多地体现为一个独立的技术单元,而Apollo则是围绕构建全栈式ADAS(高级驾驶辅助系统)/AV(自动行驶)产品所打造的一个生态系统[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值