AI工程部署开发到底是什么工作内容?

本文探讨了AI部署的关键,包括不同类型的芯片和模型,以及如何通过提升模型推理性能和利用服务框架实现部署。作者强调了从底层开发工具链的重要性,邀请读者关注其公众号以深入了解相关技术深度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AI部署简单来说就是将训练好的模型在各种芯片上高效地运行:

  • 芯片包括(x86 CPU, arm CPU, NV GPU, AMD GPU, NPU, IPU, MLU…etc基本每个芯片公司都有自己的芯片有模型部署需求)
  • 模型种类包括(检测、识别、NLP、分类、分割、CV等等都通吃)
  • 最终部署指标(领导看的metric,关乎你的工作成果)包括(延迟低,吞吐大功耗低,占用内存小,精度高)

和算法相比,AI部署那就是真正的与落地相关的了,部署的流程我认为包括两部分:提升模型推理性能充分利用芯片资源,比如充分利用GPU运算单元,使得模型性能达到GPU峰值算力,这个过程有很多成熟的产品,比如Nvidia的tensorRT,Intel的OpenVINO,商汤的openppl,旷视的megengine等等;而后,用一些现有的服务框架搭一个服务给外部调用,比如tfserving,Nvidia triton server。

现在已经有了很多成熟的工具链可以完成以上部署流程,多数情况下按照教程调用一下(中间出现bug再搜一搜)就可以部署成功。但是,我想强调的是,这其实和调包侠区别不大,技术含量还是不高。我们应该朝底层看,比如我们应该去专注于开发这套工具链,而不是使用这条工具链,这是不是路就宽了?具体来说,以上提到的tensorRT是nvidia的sota解决方案,你要是可以参与到开发它,那岂不是能看到更多更深的技术了?

具体是哪些技术可以欢迎大家关注我的公众号“AI不止算法”,不定时分享C++以及AI高性能优化部署的技术体会

### AIGC全栈开发工程师的定义 AIGC(Artificial Intelligence Generated Content)全栈开发工程师是指能够在整个软件开发生命周期内全面负责涉及人工智能生成内容的应用程序的设计、开发、测试和维护工作的专业人士。这类工程师不仅精通传统的前后端开发技术,而且擅长利用机器学习、深度学习以及其他AI相关技术来创建智能化的内容生产解决方案。 #### 工作内容 - **需求分析与架构设计** 设计并优化基于AIGC的产品架构,确保系统具有高可用性和扩展性[^1]。 - **算法研发与调优** 开发用于自动化内容创作的各种先进算法,并持续改进现有模型的表现;这可能涉及到自然语言处理(NLP)、图像识别等领域内的复杂计算逻辑[^5]。 - **数据工程** 构建高效的数据管道以支持大规模训练集准备以及实时推理所需的数据流传输;同时也要关注如何有效地管理和存储海量多媒体资源。 - **前端/后端集成** 实现用户交互界面(UI),并通过RESTful API或其他通信协议连接至后台服务层,使最终产品既美观又实用[^3]。 - **性能监控与迭代升级** 定期评估线上运行状况,及时发现潜在瓶颈并对症下药;依据反馈不断调整策略直至达到最佳用户体验效果为止[^4]。 #### 技能要求 - 掌握多种主流编程语言如Python, Java等,并熟悉TensorFlow、PyTorch之类的框架库以便于快速构建原型验证想法可行性[^2]。 - 对常见的Web技术和标准有着深刻理解——包括但不限于HTML/CSS/JavaScript及其衍生生态链成员Vue.js/AngularJS等等。 - 能够运用Docker容器化部署方案简化环境配置流程,在Kubernetes集群上调度任务提高资源利用率的同时降低运维成本支出。 - 拥有一定水平的安全意识,懂得采取适当措施保护敏感信息免受未授权访问威胁,例如采用OAuth认证机制或SSL加密通道等方式加强防护力度。 - 善于跨部门协作交流意见观点,积极参与社区活动分享个人见解促进集体进步成长。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值