肿瘤异质性简介

欢迎关注”生信修炼手册”!

肿瘤异质性tumor heterogeneity,是恶性肿瘤的特征之一,可以使肿瘤在生长速度,侵袭与转义,预后等各方面产生差异。

肿瘤异质性的体现形式多种多样,可以简单划分为以下两类

  1. 肿瘤间异质性,inter-tumor heterogeneity, 不用类型肿瘤的细胞存在基因型和表型差异

  2. 肿瘤内异质性,intra-tumor heterogeneity,同一种肿瘤其细胞也存在基因型和表型差异

示意图如下

对于瘤内异质性,又存在不同治疗阶段的时间异质性, 原发和转移肿瘤间的空间异质性等。除此之外,肿瘤微环境之间,肿瘤细胞和肿瘤循环细胞之间,同一肿瘤组织的不同肿瘤细胞也存在异质性。

深入研究肿瘤异质性,有助于了解肿瘤产生的机制,演化规律,解释治疗过程中耐药性等产生的原因,结合不同肿瘤类型和时期,为患者量身定制个性化的治疗方案,更好的实现精准医疗。

关于肿瘤异质性产生的机制,有以下两种假说

1. clonal evolution model

克隆进化模型, 肿瘤细胞群起源与单个细胞,在增殖的过程由于多次突变分化成了不同的亚克隆细胞群,示意如下

该模型又可以进一步划分为线性进化和分支进化模型, 图示如下

线性进化模型描述的肿瘤细胞向着具有生长优势的克隆进化,相比祖先克隆,顺序克隆包含更多的有力突变;分支进化模型中多个亚克隆具有相同的祖先克隆,不同分支的进化大大增加了肿瘤异质性。

2. cancer stem cell model

肿瘤干细胞模型,肿瘤组织内内可以分为肿瘤干细胞和其他细胞两大类,随着肿瘤干细胞的增殖和分化,形成了肿瘤异质性,其他细胞经过几次分化后最终死亡, 示意图如下

目前有各种检测手段可以用于肿瘤异质性的研究,以NGS测序为主的技术手段由于其通量高,检测周期快等特性占据半壁江山,根据检测对象的不同,细分为循环肿瘤DNA(ctDNA), 循环肿瘤细胞(CTC),血液中游离的DNA(cfDNA), 肿瘤组织DNA,在对应的数据分析中,除了常规的call variants外,预测肿瘤亚克隆结构也是一项核心的分析内容。

·end·

—如果喜欢,快分享给你的朋友们吧—

扫描关注微信号,更多精彩内容等着你!

### 肿瘤异质性分析算法 肿瘤异质性(Intra-tumoral Heterogeneity, ITH)是指同一肿瘤内部不同细胞之间存在的遗传、表观遗传以及功能上的差异。这种异质性不仅影响肿瘤的发发展,也对治疗策略的选择和疗效评估提出了挑战。息学领域已经开发了许多用于分析肿瘤异质性的算法和技术。 #### 基于网络的方法 一种基于息论的新型ITH测量方法被提出并应用于转录组数据中[^3]。该方法通过计算网络的Jensen-Shannon Divergence (nJSD),可以有效捕捉肿瘤样本之间的表达模式差异。这种方法的优势在于其不仅可以揭示基因层面的变化,还能反映整体网络结构的扰动情况。它已经在多个实验体系下得到了验证,包括人类癌症细胞系数据、单细胞测序数据以及小鼠克隆进化模型。 #### 单细胞测序数据分析 随着单细胞RNA测序技术的发展,研究人员能够更加精细地解析肿瘤内的细胞组成及其动态变化过程。为了提高单细胞分群结果的质量,在某些研究项目中引入了一个名为ROxxx的新指标来衡量各细胞簇的纯度水平[^1]。此参数对于后续深入挖掘潜在物学机制至关重要。 #### 多维度变异检测 除了关注基因表达之外,全面理解肿瘤异质还需要考虑DNA序列层面上的各种改变形式,比如SNPs(Single Nucleotide Polymorphisms), SNVs(Single Nucleotide Variants), CNVs(Copy Number Variations) 和 SVs(Structural Variations)[^2]。通过对这些不同类型突变进行全面筛查可以帮助识别驱动事件与伴随现象,并构建出更为完整的肿瘤演化历史图像。 #### 免疫微环境评估 考虑到免疫系统在调控抗肿瘤反应方面的重要性,也有专门设计用来估计肿瘤浸润淋巴细胞比例及其他相关特征值的技术方案[^5]。这类工具往往依赖机器学习框架或者统计建模手段实现自动化处理流程,从而辅助判断哪些病人可能会受益于特定类型的免疫疗法。 ```python import numpy as np from scipy.spatial.distance import jensenshannon def calculate_njsd(p_matrix, q_matrix): """ Calculate the network Jensen-Shannon divergence between two matrices. Parameters: p_matrix (numpy.ndarray): Probability distribution matrix P. q_matrix (numpy.ndarray): Probability distribution matrix Q. Returns: float: nJSD value indicating heterogeneity level. """ avg_dist = 0.5 * (p_matrix + q_matrix) js_distance = jensenshannon(p_matrix.flatten(), q_matrix.flatten()) return js_distance ** 2 # Example usage with dummy data if __name__ == "__main__": mat_p = np.random.rand(10, 10) mat_q = np.random.rand(10, 10) result = calculate_njsd(mat_p / sum(sum(mat_p)), mat_q / sum(sum(mat_q))) print(f"The calculated Network JSD is {result}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值