numpy中生成随机数的技巧汇总

这篇博客介绍了numpy.random模块中的两种随机数生成方式:RandomState和Generator。Generator是新推荐的方式,而RandomState是旧版接口。文章通过示例展示了如何设置种子产生重复随机数,以及在不同场景下的应用,包括生成简单随机数、从序列中抽样和按特定分布生成随机数。numpy的随机数功能强大,速度较快,适用于各种数据分析需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注”生信修炼手册”!

numpy.random是numpy的一个子模块,用于生成随机数,在新版的numpy中,有以下两种生成随机数的方式

  1. RandomState

  2. Generator

其中Generator是新版本推荐的方式,RandomState是之前旧版本的方式,只是为了考虑兼容性,依然进行了保留,通过例子来看下两种方式生成随机数的不同

>>> import numpy as np
# RandomState
>>> np.random.rand()
0.2664380895099785

# Generator
>>> rng = np.random.default_rng()
>>> rng.random()
0.7788651549635489

两种方式对应的方法大部分是相同的,但是也有小部分不一样,在使用中需要注意,比如rand, randn等方法是RandomState独有的,而integers方法是Generator独有的。

计算器模拟产生的随机数都是伪随机数,通过设置随机数种子发生器,可以保证每次随机的结果都相同,用法如下

# 未设置,每次随机的结果不同
>>> np.random.rand()
0.8707323061773764
>>> np.random.rand()
0.20671915533942642


# 设置相同的seed, 可以保证重复性
>>> np.random.seed(5)
>>> np.random.rand()
0.22199317108973948
>>> np.random.seed(5)
>>> np.random.rand()
0.22199317108973948


>>> rng = np.random.default_rng(5)
>>> rng.random()
0.5118216247002567
>>> rng = np.random.default_rng(5)
>>> rng.random()
0.5118216247002567

随机数的应用,主要有以下三种场景

1.  产生简单随机数

对于RandomState而言,有以下几种方法,示例如下

# rand函数
# 默认生成一个0到1之间,符合均匀分布的浮点数
>>> np.random.rand()
0.8707323061773764
# 设置数组的形状,1个参数表示1维数组
>>> np.random.rand(2)
array([ 0.20671916, 0.91861091])
# 两个数组表示二维数组
>>> np.random.rand(2,2)
array([[ 0.48841119, 0.61174386],
       [ 0.76590786, 0.51841799]])

# sample函数
# 抽取0到1之前的随机数
>>> np.random.sample((2,2))
array([[ 0.57261865, 0.41138362],
       [ 0.9851368 , 0.80140153]])

# random函数
# 抽取0到1之前的随机数
>>> np.random.random((2,2))
array([[ 0.08507046, 0.80777744],
       [ 0.17025008, 0.19534463]])

# randn函数
# 抽取标准正态分布的值
>>> np.random.randn(2,2)
array([[ 0.49355766, 0.50048733],
       [ 0.79242262, 0.17076445]])

# randint函数
# 从起始值和终止值之间随机抽取整数
# 默认的起始值为0
>>> np.random.randint(9, 14, size = (2, 2))
array([[13, 12],
       [10, 13]])

在Generator中,则是提供了random和integers方法,示例如下

>>> rng = np.random.default_rng()
>>> rng.random()
0.5118216247002567

>>> rng.random(2)
array([0.94864945, 0.31183145])

>>> rng.random((2,2))
array([[0.42332645, 0.82770259],
       [0.40919914, 0.54959369]])

>>> rng.integers(9, 14, size=(2, 2))
array([[10, 11],
       [12, 9]], dtype=int64)

2. 从已有序列中进行随机抽样

choice函数可以从一个序列中随机抽取其中的元素,支持有放回和无放回的抽样,默认为有放回的抽样,示例如下

>>> a = np.arange(10)
>>> np.random.choice(a, 2)
array([5, 9])


>>> rng.choice(a, 2)
array([1, 3])
```

shuffle函数可以随机打乱一个序列的顺序,示例如下

```
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.random.shuffle(a)
>>> a
array([4, 6, 7, 5, 8, 0, 1, 2, 9, 3])


>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> rng.shuffle(a)
>>> a
array([7, 5, 8, 4, 0, 6, 1, 2, 3, 9])

3. 随机抽取符合特定分布的序列

支持非常多的分布,以正态分布为例,示例如下

>>> np.random.normal(size=(2,2))
array([[ 1.5165287 , 0.27475753],
       [ 0.43851311, 0.99499231]])

>>> rng.normal(size=(2, 2))
array([[ 2.04277161, 0.646703 ],
       [ 0.66306337, -0.51400637]])

每个分布对应一个函数,常见的几种分布对应的函数如下

  1. binomial 二项分布

  2. chisquare 卡方分布

  3. normal 正态分布

  4. poisson 泊松分布

  5. standard_normal 标准正态分布

  6. uniform 均匀分布

numpy中的随机数相比内置的random模块,运行速度更快,功能也更加强大。

·end·

—如果喜欢,快分享给你的朋友们吧—

原创不易,欢迎收藏,点赞,转发!生信知识浩瀚如海,在生信学习的道路上,让我们一起并肩作战!

本公众号深耕耘生信领域多年,具有丰富的数据分析经验,致力于提供真正有价值的数据分析服务,擅长个性化分析,欢迎有需要的老师和同学前来咨询。

  更多精彩

  写在最后

转发本文至朋友圈,后台私信截图即可加入生信交流群,和小伙伴一起学习交流。

扫描下方二维码,关注我们,解锁更多精彩内容!

一个只分享干货的

生信公众号

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值