ML/DL模型调参:深度学习神经网络超参数调优简介、自适应调参、基于网格搜索(逐个调优,如batch_size/epoch/lr/优化器/激活函数/Dropout 正则化/神经元个数等)

本文介绍了深度学习中神经网络的超参数调优,包括理解模型参数的随机性、评估模型学习能力的方法。重点讨论了自适应调整学习率的代码实现和基于网格搜索的超参数调优,涉及优化器选择、学习率、激活函数、正则化等多个关键参数的调整。此外,还探讨了如何通过多次随机实验和可视化来提高模型的稳定性和性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ML/DL模型调参:深度学习神经网络超参数调优简介、自适应调参、基于网格搜索(逐个调优,如batch_size/epoch/lr/优化器/激活函数/Dropout 正则化/神经元个数等)

目录

神经网络的参数调优

1、神经网络的通病—各种参数随机性

2、评估模型学习能力

2.1、如何评估模型

2.2、深度学习中,难以采用大数据集去评估模型—可采用重复多次随机实验

可视化理解神经网络调参:层数、batch大小,学习率+激活函数+正则化

自适应调参

自适应调整学习率实现代码(每隔50个epoch其学习率减小为原来的1/10)

对深度学习模型的超参数采用网格搜索

1、概述

2、如何在scikit-learn中使用Keras模型

3、如何在scikit-learn中使用网格搜索

4、问题描述

4.1、Note on Parallelizing Grid Search

4.2、如何调整batch的大小和epochs的数量

4.3、如何优化训练优化算法—选择优化器(SGD/RMSprop/Adagrad/Adadelta/Adam/Adamax/Nadam)

4.4、如何调整学习率和动力

4.5、如何调整网络权值初始化

4.6、如何调节神经元的激活功能

4.7、如何调整Dropout 正则化

4.8、如何调节隐藏层神经元的数量

5、超参数优化技巧

6、总结



相关文章

ML/DL模型调参:机器学习和深度学习中超参数调优(整体调优)的简介(评估指标/过拟合)、常用调参优化方法(手动调参/随机调参/网格调参/贝叶斯调参)之详细攻略 
ML/DL模型调参:深度学习神

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值