ML/DL模型调参:深度学习神经网络超参数调优简介、自适应调参、基于网格搜索(逐个调优,如batch_size/epoch/lr/优化器/激活函数/Dropout 正则化/神经元个数等)
目录
2.2、深度学习中,难以采用大数据集去评估模型—可采用重复多次随机实验
可视化理解神经网络调参:层数、batch大小,学习率+激活函数+正则化
自适应调整学习率实现代码(每隔50个epoch其学习率减小为原来的1/10)
4.1、Note on Parallelizing Grid Search
4.3、如何优化训练优化算法—选择优化器(SGD/RMSprop/Adagrad/Adadelta/Adam/Adamax/Nadam)
相关文章
ML/DL模型调参:机器学习和深度学习中超参数调优(整体调优)的简介(评估指标/过拟合)、常用调参优化方法(手动调参/随机调参/网格调参/贝叶斯调参)之详细攻略
ML/DL模型调参:深度学习神