Vision Transformer with Deformable Attention
多头自注意力公式化为:
第l层transformer模块公式化为:
在Transformer模型中简单地实现DCN是一个non-trivial的问题。在DCN中,特征图上的每个元素都单独学习其偏移,其中H×W×C特征图上3×3可变形卷积的空间复杂度为9HW C。如果我们在注意力模块中直接应用相同的机制,空间复杂度将急剧上升到NqNkC,其中Nq,Nk是查询和密钥的数量,通常具有与特征图大小HW相同的比例,带来近似双二次复杂度。尽管Deformable DETR已经通过在每个尺度上设置较低数量的密钥(Nk=4)来减少这种开销,并且作为检测头工作得很好,但由于信息的不可接受的丢失,在骨干网络中处理如此少的密钥是不好的(见附录中的详细比较)。同时