多通道图片的卷积过程

本文详细解释了多通道图片卷积的过程,介绍了CNN(卷积神经网络)的构成,包括卷积层、池化层和全连接层。重点强调了参数共享和连接稀疏性带来的优势,如减少过拟合和提高模型稳健性,展示了CNN如何超越传统神经网络。
摘要由CSDN通过智能技术生成

多通道(channels)图片的卷积

如果输入图片是三维的(三个channel),例如(8,8,3),那么每一个filter的维度就是(3,3,3),每一个filter的channel要与图片的channel数目一样。
所以求卷积的过程是将每个通道分别求卷积,然后将三个通道相加得到最后的特征图。最后特征图的维度的最后一个channel与利用了多少个filter有关。
在这里插入图片描述
同时有4个filter

图中的输入图像是(8,8,3),filter有4个,大小均为(3,3,3),得到的输出为(6,6,4)。
我觉得这个图已经画的很清晰了,而且给出了3和4这个两个关键数字是怎么来的,所以我就不啰嗦了(这个图画了我起码40分钟)。

其实,如果套用我们前面学过的神经网络的符号来看待CNN的话,

  • 我们的输入图片就是X,shape=(8,8,3);
  • 4个filters其实就是第一层神金网络的参数W1,,shape=(3,3,3,4),这个4是指有4个filters;
  • 我们的输出,就是Z1,shape=(6,6,4);
  • 后面其实还应该有一个激活函数,比如relu,经过激活后,Z1变为A1,shape=(6,6,4);

所以,在前面的图中,我加一个激活函数,给对应的部分标上符号,就是这样的:
在这里插入图片描述

二 CNN的构成

上面我们已经知道了卷积(convolution)、池化(pooling)以及填白(padding)是怎么进行的,接下来我们就来看看CNN的整体结构,它包含了3种层(layer):

1 Convolutional layer (卷积层–CONV)

由滤波器filters和激活函数构成。
一般要设置的超参数包括filters的数量、大小、步长,以及padding是“valid”还是“same”。当然,还包括选择什么激活函数。

2 Pooling layer (池化层)

这里里面没有参数需要我们学习,因为这里里面的参数都是我们设置好了,要么是Maxpooling,要么是Averagepooling。
需要指定的超参数,包括是Max还是average,窗口大小以及步长。
通常,我们使用的比较多的是Maxpooling,而且一般取大小为(2,2)步长为2的filter,这样,经过pooling之后,输入的长宽都会缩小2倍,channels不变。

3 Fully Connected layer (全连接层–FC)

这个前面没有讲,是因为这个就是我们最熟悉的家伙,就是我们之前学的神经网络中的那种最普通的层,就是一排神经元。因为这一层是每一个单元都和前一层的每一个单元相连接,所以称之为“全连接”。
这里要指定的超参数,无非就是神经元的数量,以及激活函数。

接下来,我们随便看一个CNN的模样,来获取对CNN的一些感性认识:

在这里插入图片描述
这里需要说明的是,在经过数次卷积和池化之后,我们 最后会先将多维的数据进行“扁平化”,也就是把 (height,width,channel)的数据压缩成长度为 height × width × channel 的一维数组,然后再与 FC层连接,这之后就跟普通的神经网络无异了。
可以从图中看到,随着网络的深入,我们的图像(严格来说中间的那些不能叫图像了,但是为了方便,还是这样说吧)越来越小,但是channels却越来越大了。在图中的表示就是长方体面对我们的面积越来越小,但是长度却越来越长了。

卷积神经网络 VS 传统神经网络

其实现在回过头来看,CNN跟我们之前学习的神经网络,也没有很大的差别。
传统的神经网络,其实就是多个FC层叠加起来。
CNN,无非就是把FC改成了CONV和POOL,就是把传统的由一个个神经元组成的layer,变成了由filters组成的layer。
那么,为什么要这样变?有什么好处?
具体说来有两点:

1.参数共享机制(parameters sharing)

我们对比一下传统神经网络的层和由filters构成的CONV层:
假设我们的图像是8×8大小,也就是64个像素,假设我们用一个有9个单元的全连接层:
在这里插入图片描述
使用全连接

那这一层我们需要多少个参数呢?需要 64×9 = 576个参数(先不考虑偏置项b)。因为每一个链接都需要一个权重w。

那我们看看 同样有9个单元的filter是怎么样的:
在这里插入图片描述
使用filter

其实不用看就知道,有几个单元就几个参数,所以总共就9个参数!

因为,对于不同的区域,我们都共享同一个filter,因此就共享这同一组参数。
这也是有道理的,通过前面的讲解我们知道,filter是用来检测特征的,那一个特征一般情况下很可能在不止一个地方出现,比如“竖直边界”,就可能在一幅图中多出出现,那么 我们共享同一个filter不仅是合理的,而且是应该这么做的。

由此可见,参数共享机制,让我们的网络的参数数量大大地减少。这样,我们可以用较少的参数,训练出更加好的模型,典型的事半功倍,而且可以有效地 避免过拟合。
同样,由于filter的参数共享,即使图片进行了一定的平移操作,我们照样可以识别出特征,这叫做 “平移不变性”。因此,模型就更加稳健了。

2.连接的稀疏性(sparsity of connections)

由卷积的操作可知,输出图像中的任何一个单元,只跟输入图像的一部分有关系:

在这里插入图片描述
只跟输入的一部分有关

而传统神经网络中,由于都是全连接,所以输出的任何一个单元,都要受输入的所有的单元的影响。这样无形中会对图像的识别效果大打折扣。比较,每一个区域都有自己的专属特征,我们不希望它受到其他区域的影响。

正是由于上面这两大优势,使得CNN超越了传统的NN,开启了神经网络的新时代。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值