基于离散余弦变换的最小二乘法相位解包裹(DCT)

本文探讨了如何利用离散余弦变换(DCT)来解决最小二乘法中的相位解包裹问题。通过对相位数据进行DCT转换,能够有效降低噪声影响并提高解包裹的精度。这种方法在机器学习和信号处理领域具有潜在的应用价值。
摘要由CSDN通过智能技术生成
%最小二乘解包裹相位

% I11=imread('1.bmp21.bmp');I1=double(I11(:,:,1));I1=I1(145:388,205:448);

% I21=imread('1.bmp54.bmp');I2=double(I21(:,:,1));I2=I2(145:388,205:448);

% I31=imread('1.bmp87.bmp');I3=double(I31(:,:,1));I3=I3(145:388,205:448);

% I41=imread('1.bmp120.bmp');I4=double(I41(:,:,1));I4=I4(145:388,205:448);

% b=atan2((I4-I2),(I1-I3));%四步相移算法


% lamda=10;%调节参数

% [M,N]=size(b);

% dx=zeros(M,N);

% dy=zeros(M,N);

% %求相位差的包裹相位

% for n=1:N

%  for m=1:M-1

%         if((b(m+1,n)-b(m,n))>pi)

%           dx(m,n)=b(m+1,n)-b(m,n)-2*pi;

%         elseif((b(m+1,n)-b(m,n))<-pi)

%           dx(m,n)=b(m+1,n)-b(m,n)+2*pi;

%     
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

V建模忠哥V

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值