%最小二乘解包裹相位
% I11=imread('1.bmp21.bmp');I1=double(I11(:,:,1));I1=I1(145:388,205:448);
% I21=imread('1.bmp54.bmp');I2=double(I21(:,:,1));I2=I2(145:388,205:448);
% I31=imread('1.bmp87.bmp');I3=double(I31(:,:,1));I3=I3(145:388,205:448);
% I41=imread('1.bmp120.bmp');I4=double(I41(:,:,1));I4=I4(145:388,205:448);
% b=atan2((I4-I2),(I1-I3));%四步相移算法
% lamda=10;%调节参数
% [M,N]=size(b);
% dx=zeros(M,N);
% dy=zeros(M,N);
% %求相位差的包裹相位
% for n=1:N
% for m=1:M-1
% if((b(m+1,n)-b(m,n))>pi)
% dx(m,n)=b(m+1,n)-b(m,n)-2*pi;
% elseif((b(m+1,n)-b(m,n))<-pi)
% dx(m,n)=b(m+1,n)-b(m,n)+2*pi;
%
基于离散余弦变换的最小二乘法相位解包裹(DCT)
最新推荐文章于 2024-04-17 21:13:11 发布
本文探讨了如何利用离散余弦变换(DCT)来解决最小二乘法中的相位解包裹问题。通过对相位数据进行DCT转换,能够有效降低噪声影响并提高解包裹的精度。这种方法在机器学习和信号处理领域具有潜在的应用价值。
摘要由CSDN通过智能技术生成