置信度与置信空间

置信区间

样本估计总体平均值误差范围的区间,用中括号[a,b]表示。a、b的具体数值取决于你对于”该区间包含总体均值”这一结果的可信程度,因此[a,b]被称为置信区间。 

举例说明:你打枪打10次,你可以得到一个平均值8,再打10次可能就是7了,而总体的期望是客观存在不会变的。样本是从总体中抽出来的,那么样本的均值和总体的期望应该差的不远吧?你射击的均值是8,总体的期望总不能是1吧?所以,你若换句话说打枪的平均环数是[6,8],那么相信的人就会很多了。可见,虽然扩大了总体均值的取值范围,但是可信度明显高了。[6,8]就是置信区间。

当然你不能简单无限度扩大区间范围,毕竟统计也要讲究一定的精度。所以咱就有了置信度,也就是说,你测得的均值,和总体真实情况的差距小于这个给定的值的概率,说你测得的均值就是总体期望是很草率的,但是说,我有95%的把握认为我测得的均值,非常接近总体的期望了,听起来就靠谱的多。

95%置信度       

一般来说,选定某一个置信区间,我们的目的是为了让”ab之间包含总体平均值”的结果有一特定的概率,这个概率就是所谓的置信水平。 样本数目不变的情况下,做100次抽样,有95个置信区间包含了总体真值。置信度为95%。换言之,若扩大样本容量,考100次试,这100名学生的成绩组成的区间有95次包含了总体真正的均值,那这才是95%置信度。说白了,我们有95%的把握说总体的真值在这个区间内。

参数95%的置信度在区间A的意思是:

采样100次计算95%置信度的置信区间,有95次计算所得的区间包含真实值。

标准差(standard deviation)与标准误差(standard error)

标准差是描述观察值(个体值)之间的变异程度(例如一个人打十次靶子的成绩,这时有一个平均数8,有一个反映他成绩稳定与否的标准差); 
标准误差是描述样本均数的抽样误差(例如十次抽样,每次他成绩平均数(7,8,6,9,5,6,7,7,8,9)的标准差,也就是抽样分布的标准差); 
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值