R-C3D pytorch版本的代码调试

本文档详细记录了R-C3D pytorch实现的调试过程,包括使用THUMOS2014数据集,环境配置如pytorch 0.4.0、cuda 9.0,解决ffmpeg缺失问题,以及编译和训练中的注意事项。在训练时遇到的libgthread-2.0.so.0错误,通过安装相关库得以解决。
摘要由CSDN通过智能技术生成

代码链接:https://github.com/sunnyxiaohu/R-C3D.pytorch

在调试过程中踩了许多大坑,在此将能想到的进行一下总结。

数据集

选用THUMOS2014数据集,他包括行为识别和时序行为检测两个任务。训练集市UCF101包括101类动作,总计13320段已经分割好的视频。他的验证集和测试集分别含有1010个和1574个未分割过的视频,但是其中只含有20类动作的未分割视频片段是有时序行为片段标注的,包括200个验证集视频(3007个行为片段)以及213个测试集视频(3358个行为片段)。仅有这些视频是可以用于进行时序行为检测的训练以及测试的。

经过多次搭建环境得到此代码的运行环境如下:

pytorch:0.4.0(其他版本经过尝试发现均会报错,当然要是大佬可以改代码就不存在这个问题)

cuda:9.0或者8.0均可。(如果pytorch和cuda版本匹配不上会报错undefined symbol: __cudaPopCallConfiguration

torchvision:0.2.1或者0.1.6均可(0.3.0会报错AttributeError: module 'torch.nn' has no attribute 'ModuleDict'

如何查看pytorch对应的cuda版本:

python

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值