文章目录
1. EffectiveSE 注意力模块
论文名称:
论文地址:https://arxiv.org/pdf/1911.06667.pdf
代码地址:https://github.com/youngwanLEE/CenterMask
1.1 原理
我们提出了一种简单而高效的无锚点实例分割方法,称为CenterMask,它在无锚点单阶段目标检测器中添加了一种新的空间注意力引导掩膜(SAG-Mask)分支,与Mask R-CNN类似。SAG-Mask分支嵌入到FCOS目标检测器中,在每个检测到的边界框上预测分割掩膜,并利用空间注意力图帮助聚焦于信息丰富的像素并抑制噪声。我们还提出了改进的主干网络VoVNetV2,采用了两种有效策略:(1)残差连接,用于缓解较大VoVNet的优化问题,(2)有效的Squeeze-Excitation (eSE)处理原始SE中的通道信息丢失问题。基于SAG-Mask和VoVNetV2,我们设计了Ce

该博客介绍了如何在YOLOv5的C3模块中集成EffectiveSE、GlobalContext、GatherExcite和MHSA四种注意力机制,通过详细阐述各个模块的原理和代码实现,提升模型的性能。文章提供了结构图和添加步骤,以及相关推荐的注意力机制研究。
订阅专栏 解锁全文
488

被折叠的 条评论
为什么被折叠?



