特征融合篇 | YOLOv8 引入长颈特征融合网络 Giraffe FPN

DAMO-YOLO是一种基于YOLO的高性能目标检测方法,通过引入MAE-NAS、RepGFPN、ZeroHead、AlignedOTA和蒸馏增强等技术,实现不同尺度模型的高性能和低延迟。在COCO数据集上,DAMO-YOLO-T/S/M/L和轻量级模型在保持高精度的同时,满足了不同计算资源的需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

请添加图片描述

在本报告中,我们介绍了一种名为DAMO-YOLO的快速而准确的目标检测方法,其性能优于现有的YOLO系列。DAMO-YOLO是在YOLO的基础上通过引入一些新技术而扩展的,这些技术包括神经架构搜索(NAS)、高效的重参数化广义FPN(RepGFPN)、带有AlignedOTA标签分配的轻量级头部以及蒸馏增强。特别地,我们使用MAE-NAS,一种受最大熵原理指导的方法,在低延迟和高性能的约束下搜索我们的检测骨干网络,生成类似ResNet / CSP的结构,带有空间金字塔池化和聚焦模块。在颈部和头部的设计中,我们遵循“大颈,小头”的原则。我们引入了具有加速的queen-fusion的广义FPN来构建检测器颈部,并通过高效的层聚合网络(ELAN)和重参数化来升级其CSPNet。然后,我们研究了检测器头部大小对检测性能的影响,并发现具有仅一个任务投影层的重颈部会产生更好的结果。此外,我们提出了AlignedOTA来解决标签分配中的错位问题。还引入了一种蒸馏方案,以将性能提升到更高水平。基于这些新技术,我们构建了一系列不同尺度的模型,以满足不同场景的需求。对于一般的工业需求,我们提出了DAMO-YOLO-T/S/M/L。它们在COCO上的性能分别为43.6/47.7/50.2/51.9 mAPs,对应于T4 GPU上的延迟为2.78/3.83/5.62/7.95 ms。此外,对于计算能力有限的边缘设备,我们还提出了DAMO-YOLO-Ns/Nm/Nl轻量级模型。它们在COCO上的性能分别为32.3/38.2/40.5 mAPs,对应于X86-CPU上的延迟为4.08/5.05/6.69 ms。我们提出的通用和轻量级模型在各自的应用场景中表现优越,超过了其他YOLO系列模型。

### YOLO中的特征金字塔网络FPN)的作用与实现 #### FPNYOLO中的作用 特征金字塔网络FPN, Feature Pyramid Network)是一种用于多尺度目标检测的有效方法。它通过构建自上而下的路径并将其与自下而上的路径相结合,增强了不同层次特征之间的信息流动[^1]。具体来说: - **增强多尺度特征表示能力**:FPN能够有效地融合来自浅层和深层的特征,从而提升模型对小物体的检测效果[^2]。 - **减少计算开销**:相比于传统的多尺度输入图像策略,FPN能够在单次前向传播中提取多个尺度的特征,显著降低了计算成本。 #### FPNYOLO中的实现 在YOLO系列模型中,FPN通常被用来连接骨干网络的不同阶段输出,形成一个多尺度预测框架。以下是其实现的关键点: 1. **自底向上路径(Bottom-up Pathway)** 自底向上路径由卷积神经网络的标准前馈过程构成,逐层提取越来越抽象的特征[^3]。这些高层特征具有更强的语义信息,但对于空间位置敏感的小物体表现较差。 2. **自顶向下路径(Top-down Pathway)** 自顶向下路径通过对高层次特征进行上采样操作,并与低层次特征相加或拼接来生成更丰富的中间层特征[^4]。这一过程中常用的操作包括双线性插值法或其他可学习的上采样技术。 3. **横向连接(Lateral Connections)** 横向连接负责将相同分辨率但不同语义级别的特征结合起来。这一步骤可以通过简单的元素级求和或者concatenation完成[^5]。 下面是基于PyTorch的一个简单FPN实现示例代码片段: ```python import torch.nn as nn class FPN(nn.Module): def __init__(self, in_channels_list, out_channels): super(FPN, self).__init__() self.laterals = nn.ModuleList() self.fusions = nn.ModuleList() for i in range(len(in_channels_list)): lateral_conv = nn.Conv2d(in_channels_list[i], out_channels, kernel_size=1) fusion_conv = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) self.laterals.append(lateral_conv) self.fusions.append(fusion_conv) def forward(self, inputs): last_inner = self.laterals[-1](inputs[-1]) outputs = [last_inner] for i in range(len(inputs)-2, -1, -1): inner_lateral = self.laterals[i](inputs[i]) upsampled = nn.functional.interpolate(last_inner, scale_factor=2, mode="nearest") last_inner = inner_lateral + upsampled outputs.insert(0, last_inner) results = [] for i, conv_fusion in enumerate(self.fusions): output = conv_fusion(outputs[i]) results.append(output) return tuple(results) ``` 上述代码定义了一个基础版本的FPN模块,适用于多种主干网络结构。需要注意的是实际应用时可能还需要进一步调整参数设置以及引入额外组件如PANet等以获得更好的性能表现[^6]。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迪菲赫尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值