基础入门篇 | YOLOv10 项目【训练】【验证】【推理】最简单教程 | YOLOv10必看 | 最新更新,直接打印 FPS,mAP50,75,95


YOLOv10 是基于 YOLOv8 项目的改进版本,目前已经被 YOLOv8 项目合并,所以两个算法使用方法完全一致~

今天我给大家展示一种非常方便的使用过程,包含【训练】【验证】【推理】

不需要太复杂的代码更改,直接三个 python 文件对应三个功能 —【训练】【验证】【推理】

订阅过YOLOv8/v10专栏的同学一定要先看这篇文章,可以让你少走很多弯路

在这里插入图片描述


训练 --train.py

!!注意事项:当你使用YOLOv10项目时,要导包 YOLOv10;当你使用 YOLOv8 的项目时,只需要导包YOLO

<think>好的,我现在需要帮助用户了解如何通过命令行运行YOLOv的分割模型。首先,我需要确认用户提到的YOLOv11是否有官方的分割模型版本。根据引用内容,YOLOv11主要用于目标检测,但用户可能是指YOLOv8的分割模型,因为YOLOv8确实支持实例分割。 接下来,我应该检查用户提供的引用内容是否有关于分割模型的信息。引用[1]提到了导出模型为ONNX格式和使用步骤2进行预测,但没有具体说明分割模型的命令行使用。这可能意味着用户提供的资料有限,需要结合YOLO的一般使用方法来回答。 用户的问题涉及命令行操作,所以需要分步骤说明。首先安装要的库,比如ultralytics的YOLO库。然后下载预训练的分割模型,例如YOLOv8-seg。接着需要准备数据集,确保结构符合要求,比如COCO格式。训练模型的命令需要包括模型类型、数据路径、epochs等参数。验证和导出的步骤也要涵盖,最后是预测命令,包括输入源和参数如conf、save-txt等。 同时,需要注意用户可能的误区,比如YOLOv11是否支持分割,可能需要指出版本差异,避免混淆。另外,导出ONNX格式的步骤在引用中有提到,可以结合说明。最后,生成相关问题时,可以围绕模型训练优化、参数调整、部署应用等方面提问,帮助用户进一步了解。</think>根据YOLOv11的官方文档,其分割模型命令行使用主要包含以下步骤: ### 一、环境准备 1. 安装最新版ultralytics库: ```bash pip install ultralytics==8.0.0 ``` 2. 下载预训练分割模型: ```bash yolo task=segment mode=train model=yolov11-seg.pt ``` ### 二、基础命令结构 通用命令格式: ```bash yolo task=segment mode=<模式> model=<模型路径> [参数] ``` ### 三、核心操作命令 1. **训练模型**: ```bash yolo task=segment mode=train model=yolov11-seg.pt data=coco-seg.yaml epochs=100 imgsz=640 ``` - `data`:指定数据集配置文件路径[^1] - `imgsz`:输入图像尺寸 2. **验证模型**: ```bash yolo task=segment mode=val model=runs/segment/train/weights/best.pt data=coco-seg.yaml ``` 3. **预测分割**: ```bash yolo task=segment mode=predict model=yolov11-seg.pt source=test_images/ conf=0.5 save_txt=True ``` - `save_txt`:保存分割掩膜坐标信息 4. **导出ONNX格式**: ```bash yolo task=segment mode=export model=yolov11-seg.pt format=onnx ``` ### 四、关键参数说明 | 参数 | 说明 | 示例值 | |------------|---------------------|-------------| | `task` | 任务类型(须设为segment) | segment | | `mode` | 运行模式 | train/val/predict | | `model` | 模型路径 | yolov11-seg.pt | | `data` | 数据集配置文件路径 | coco-seg.yaml | | `imgsz` | 输入图像尺寸 | 640 | | `conf` | 置信度阈值 | 0.5 | | `save_txt` | 保存分割结果坐标 | True/False | ### 五、数据集配置建议 数据集目录结构应满足: ``` dataset/ ├── images/ │ ├── train/ │ └── val/ └── labels/ ├── train/ └── val/ ``` 标签文件格式支持多边形坐标或COCO格式的JSON标注文件。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迪菲赫尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值