即插即用篇 | YOLOv10 引入 SKAttention 注意力机制 | 《Selective Kernel Networks》

81 篇文章 44 订阅 ¥299.90 ¥399.90

在这里插入图片描述

论文名称:《Selective Kernel Networks》

论文地址:https://arxiv.org/pdf/1903.06586.pdf

代码地址:https://github.com/implus/SKNet



1 原理

在标准的卷积神经网络中,每层人工神经元的感受野被设计为具有相同的大小。神经科学界已经广泛认识到,视觉皮层神经元的感受野大小会受到刺激的调节,然而在构建CNN时很少考虑这一点。我们提出了一种动态选择机制,使得CNN中的每个神经元可以根据多个输入信息的尺度自适应地调整其感受野大小。我们设计了一个称为Selective Kernel (SK)单元的构建块,其中使用softmax注意力将具有不同核大小的多个分支进行融合,这种注意力受到这些分支中的信息

Yolov5 SimAM是Yolov5目标检测算法中的一种注意力机制。SimAM是一种无参注意力机制,与SE(Squeeze-and-Excitation)、CBAM(Convolutional Block Attention Module)、ECA(Efficient Channel Attention)等相比,在推理速度方面表现相当,优于CBAM和SRM(Selective Refinement Module)。SimAM可以通过在Yolov5的配置文件.yaml中进行相应的配置来启用。 注意力机制在计算机视觉领域中被广泛应用,用于提取图像中重要的特征信息。SE、Coordinate Attention、CBAM、ECA、SimAM等都是常见的注意力机制。每种注意力机制都有其独特的原理和应用场景。SE注意力机制主要关注通道间的关系,CBAM注意力机制则结合了通道注意力和空间注意力,ECA注意力机制则通过计算通道之间的自适应加权系数来增强特征表示能力,而SimAM是一种无参注意力机制,不需要额外的参数学习。 总之,Yolov5中的SimAM注意力机制是一种推理速度较快且表现优秀的无参注意力机制,可以通过在配置文件.yaml中进行相应的配置来启用。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [Yolov5添加注意力机制](https://blog.csdn.net/m0_56247038/article/details/124845508)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [目标检测算法——YOLOv5/YOLOv7改进之结合无参注意力SimAM(涨点神器)](https://blog.csdn.net/m0_53578855/article/details/127419661)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迪菲赫尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值