论文名称:《Selective Kernel Networks》
论文地址:https://arxiv.org/pdf/1903.06586.pdf
代码地址:https://github.com/implus/SKNet
文章目录
1 原理
在标准的卷积神经网络中,每层人工神经元的感受野被设计为具有相同的大小。神经科学界已经广泛认识到,视觉皮层神经元的感受野大小会受到刺激的调节,然而在构建CNN
时很少考虑这一点。我们提出了一种动态选择机制,使得CNN
中的每个神经元可以根据多个输入信息的尺度自适应地调整其感受野大小。我们设计了一个称为Selective Kernel (SK)
单元的构建块,其中使用softmax
注意力将具有不同核大小的多个分支进行融合,这种注意力受到这些分支中的信息