第一章:解密人工智能
1.1 第一章简介
AI是两个独立的ideas:弱人工智能(智能音箱、自动驾驶、网络搜索)&强人工智能(帮你做任何事)
ANI进步很快,AGI进步的缓慢。
ANI(单一的人工智能)
下面的课程安排:
1.2 什么是机器学习
- 监督学习:从输入到输出的映射(从A到B)
例子:
要想得到良好的效果,需要什么:
1.大量的数据
2.训练一个非常大的神经网络
1.3什么是数据
A、B一般是自己决定的,从哪到哪
1.3.1 获取数据
- 手动标记
- 观察用户行为或其他类型的行为
- 从网站下载或从合作伙伴那里下载
1.3.2 使用和误用的数据
通常数据多比数据少要好,但也不全是这样
- 不要认为只要扔数据给AI团队,就觉得它们会创造价值
- 不要为数据而过度投资,有时候不知道这些数据如何创造价值,除非有一个AI团队来研究这些数据
有时候数据很差,有问题
1.4 人工智能术语
- 机器学习:A->B(通常有通过一个软件,从输入到输入)
- DS:一些帮助你做商业决定的见解,比如是否需要投资来翻新房子,通常做一些决策
- 深度学习/神经网络
1.5 什么是人工智能公司
1.6 机器学习的可行性
AI可以做什么,不可以做什么
判断监督学习(A->B)能做什么不能做什么?
- 几乎所有一瞬间你可以完成的事,都可以用监督学习来完成
左边的容易做,A->B.
右边的不好做,Ai不容易写出这样一段话(感同身受)
AI很难写出感同身受的东西
两个经验法则判断机器学习是否可行的??通过直觉判断形目是否可行
解释:
- 学习一个简单的概念是可行的,1s或几秒就可以得出一个结论,比如观察窗外汽车的位置
- 大量可用的数据,A->B,客户发来的邮件->邮件类型(退款,发货)
1.7 机器学习的可行性事例
雷达-》车的位置
伸手-》无法确定意图
1.8 深度学习的直观解释
乐高积木一样堆叠神经元
1.9 测试
-
如今使用的垃圾邮件过滤器、语音识别和其它应用最符合哪种人工智能类型的定义?专用人工智能(ANI)
-
最常用的学习输入(A)到输出(B)映射的 AI 技术叫作什么?监督学习
-
使用监督学习构建语音识别系统,为了让神经网络(深度学习)达到最佳性能,理想的选择是?(多选)
一个大型数据集(由音频文件和对应的文本转录构成)、一个大型神经网络 -
人工标注是为监督学习算法获取数据的唯一途径?例如给定输入A,人工提供B。×
-
一些类型的数据相较于其它数据更有价值,人工智能团队能够帮助您搞清楚什么样的数据是值得获取的
-
您运营着一家摩托车生产公司,下列哪些是非结构化数据?(多选)
-
假设您运营着一家卖猫粮的网站,下列哪些是数据科学项目成果?(多选)
-
根据视频3中对人工智能属于的定义,下列哪些陈述是正确的?(多选)
-
人工智能公司应当在哪些方面做得很好?
-
假设您想输入一张人脸面部图片(A),输出他们是否在微笑(B),因为这是一项大多数人都能在一秒内完成的任务,所以监督学习可以学习这种 A 到 B 的映射。对吗 √
第二章:建立AI项目
2.1 第二章简介
2.2 机器学习项目的工作流程
- 收集数据
- 训练模型A-》B
- 部署模型
2.3 数据科学的工作流程
策略调整,优化生产
2.4 每个工作职能都需要学会使用数据
销售
工厂线
招聘
农业
市场营销
2.5 如何选择一个人工智能项目
AI知识和专业知识相结合
头脑风暴框架:
考虑优化某一种任务,而不是取代某一个工作
能不能给送死带来效益
能不能解决公司痛点
即使没有很多数据也能取得进步
下部分:
除了技术和业务考察外,还有道德考察
2.6 如何与AI团队合作
2.7 AI 团队的技术改进
2.8 测试
第三章:在公司里运用AI
3.1 简介
3.1 智能音箱案例研究
3.2 自动驾驶汽车案例研究
3.3AI团队的角色示例
3.4 人工智能转型白皮书
- 统一管理AI人才、建设管理统一数据软件平台、给足够资金
4.
白皮书地址: link
3.5 需要避免的AI陷阱
3.6 迈出AI人工智能的第一步
3.7 主要人工智能应用概览
非监督学习
- 迁移学习
- 强化学习
- 强化学习需要大量数据
- 生成对抗神经网络
- 生成对抗网络:无中生有,创造新内容
- 知识图谱
3.8 测试
第四章:AI与社会
4.1 简介
4.2 针对人工智能的现实看法
4.3 歧视和偏见
4.4 AI的对抗攻击
4.5 AI的不良使用
4.6 人工智能与发展中国家
4.7 AI和工作
4.8 结论
4.8 测试