一、材料的各向异性属性
在结构力学有限元仿真中,材料的力学属性是我们需要着重考虑的核心要素。在对结构进行最常见的 静力学响应问题 分析时,如果我们假设构成结构的材料具备最为简单而普遍的各向同性线弹性本构关系,那么为了完成有限元分析,我们就需要使用四个参数分别定义材料的密度、杨氏模量、泊松比与剪切模量。
然而,各向同性线弹性材料这样一种模型假设有着 局限 的适用范围。一般来说,各向同性线弹性材料适合对以 金属、塑料 为基材的、熔铸成型的结构件进行 小变形问题 的分析。对于一般的金属及塑料材料,它们确实有着 均一的各向同性材料本构关系 ,换句话说,假如我们从这样的金属或塑料材质的 构件的任意位置上切割下一个球型试件进行力学试验,无论从试件的哪一个方向上进行力学实验,测量得到的应力-应变关系都是一致的。
而对于 天然橡胶、硅胶 这类可以承受大变形的柔性材料,其应力-应变关系就不能以简单的线弹性来描述了。简单来说,在橡胶受力拉伸的不同阶段,其产生单位变形所需施加的外力是不同的。因此,我们需要使用一系列超弹性材料模型与模型对应的 应变能密度函数 来对这些材料进行描述,常见的超弹性材料拉伸-应力曲线如 图一 所示。对于这一问题,我们在博客《超弹性模型有限元分析入门》中尝试开展了更深入详细的讨论。
图 1 BASF Elastollan-1175聚氨酯材料的拉伸-应力曲线 |
---|
除此之外,即使在线性的应力-应变关系下,也存在着与金属等各向同性材料特点不同的材料类型。天然木材、竹材与纤维增强材料即是如此。在微观结构上,诸如竹材与纤维增强复材的材料内部包含了有向且均匀分布的增强纤维,纤维与纤维间由基体联粘。由于增强纤维的有向分布,材料在宏观的各个方向上即会具备不同的力学响应特性,换句话说,在材料的各个方向上有着不同的杨氏模量、剪切模量乃至泊松比。一般来说,这类材料在铺设纤维的方向上具有最优异的力学性能,在另外两个方向上力学性能稍弱。如果纤维增强材料的内部交错铺设了不同方向的纤维,其力学性能的各向异性将进一步增强。
二、各向异性与正交各向异性
对于线弹性各向异性材料,考虑到材料的 线弹性 特点,我们可以直接通过其不同方向上应力与应变的 线性 关系来描述材料的 方向敏感性 。材料微元所受的应力可以使用一个6×1维的向量σ表示,它的六个分量分别为微元所受到的三方向正应力与三方向切应力。对应地,应变ε也是一个6×1维的向量,其六个分量分别为微元产生的三方向正应变与三方向切应变。(从应力与应变张量的角度来说,σ与ε均为3×3的二阶张量,但由于切应力互等定理,应力与应变张量的实际自由度仅有6个。)应力与应变的线性关系可以使用一个6×6维的本构对称矩阵D表示:
σ
=
D
ε
σ=Dε
σ=Dε
正交各向异性是各向异性的一种特殊情况。在正交各向异性材料中,三个正交方向上的正轴向运动与剪切运动解耦。换句话说,当材料微元沿其中一个主方向轴向拉伸时,只会在与该主方向垂直的另外两个方向上收缩,而不会产生切应变。
因此,完整描述正交各向异性材料的线弹性本构关系,不再需要36个参数,而仅仅需要9个参数,分别是:三个主方向上的杨氏模量 E、泊松比 μ以及剪切模量 G。
三、 在COMSOL中定义各向异性材料
COMSOL 结构力学模块下的多个物理场(例如固体力学物理场、壳物理场等)均支持对各向异性线弹性材料组成的结构进行分析。在不同的结构力学物理场下,各向异性线弹性材料的设置方法是类似的。
简单来说,在COMSOL结构力学模块中,我们需要通过以下 3个主要操作步骤,实现各向异性线弹性材料的设置:
- 在 “材料节点>> 目标材料(mat) 子节点” 下定义目标材料的各向异性属性参数;
- 在 “定义节点” 添加并定义表征材料空间指向的 “坐标系节点” ;
- 在“固体力学节点”下添加新的“线弹性材料子节点”,并在“线弹性材料”分栏中选择并定义 "各向异性固体模型"或 “正交各向异性固体模型”。
接下来,我们就通过我们经常讨论的竹纤维片桥梁案例(我们曾以它为例,讨论了“如何构建壳模型所需的模型几何”),以 固体力学物理场 与 正交各向异性材料 为例,介绍定义各向异性材料的方法。
3.1 有限元分析的初始化设置
图 2 竹纤维片桥梁模型的Solidworks建模 |
---|
图二 展示了我们在Solidworks中绘制的一座简化的竹纤维片桥梁模型。对于这样一座完整的桥梁,在有限元分析中,我们可以利用对称边界条件降低计算消耗,取桥梁的四分之一分析它完整的受力与响应。
首先通过模型向导进行有限元分析的快速初始化。依次,我们需要:
- 在“选择空间维度”界面选择 “三维” ;
图 3 模型初始化:选择空间维度 |
---|
- 在“选择物理场”界面添加“固体力学(solid)物理场”;
图 4 模型初始化:选择物理场 |
---|
- 在“选择研究”界面添加“稳态研究”;
图 5 模型初始化:选择研究 |
---|
随后,我们在 “几何节点” 中添加 “导入子节点” ,导入在Solidworks中预先绘制的模型几何。如此,便完成了模型的初始化设置。
3.2 在“材料节点”中定义各向异性材料参数
我们首先右键单击“材料节点”,选择“从库中添加材料”,随后在材料库中双击“Wood(pine)”以将该材料添加至模型树中。
图 6 操作:从库中添加材料 |
---|
将“Wood(pine)”这一材料添加至模型树后,我们发现,在“材料节点”下已经新增了一个“Wood(pine) (mat1) 子节点”,该子节点已对密度预先进行了定义。在第二节我们已经介绍,如果需要对正交各向异性材料的力学特性进行定义,我们至少需要9个参数。因此,我们需要在“Wood(pine) (mat1) 子节点”中添加各向异性材料属性,并输入竹纤维片对应的力学属性参数。
图 7 操作:展开材料属性分栏 |
---|
单击展开上图红色方框标识的“材料属性分栏”,可以在目标材料子节点下增加所需属性的定义子节点。展开“材料属性分栏”后,我们可以在“固体力学>>线弹性材料>>正交各向异性”下找到一系列定义正交各向异性所需的参数,包括剪切模量、杨氏模量、泊松比等,如 图八 。
图 8 操作:添加正交各向异性子节点 |
---|
双击“正交各向异性”,它即会被添加至 “ Wood(pine) (mat1) 子节点” 下,如图九所示。竹纤维片是典型的正交各向异性材料,以其纤维布置方向为第一主方向,则材料三方向上的杨氏模量、剪切模量和泊松比分别为:
材料属性 | 属性参数 |
---|---|
杨氏模量E (1, 2, 3) | {12.3GPa, 4.5GPa, 4.5GPa} |
泊松比μ (12, 23, 13) | {0.3, 0.3, 0.3} |
剪切模量G (12, 23, 13) | {2.9GPa, 1.7GPa, 2.9GPa} |
将上述参数如 图九 方式填入 “Wood(pine)>>正交各向异性子节点>>输出属性分栏” ,即完成了 “材料节点” 部分的定义。
图 9 操作:输入正交各向异性材料参数 |
---|
3.3 在“定义节点”中定义基矢坐标系
上一步中,我们定义了竹纤维片材料内部不同方向上的力学性能参数。然而,我们尚未在模型中指定材料的空间指向。换句话说,在COMSOL中,我们已经制作出了一种具备正交各向异性属性的材料;怎么在空间中安放竹纤维片,是我们接下来要解决的问题。
对于正交各向异性材料,COMSOL支持使用基矢坐标系等多种坐标系对材料的空间指向进行定义。本篇博客里,我们即以最为基础的“基矢坐标系”进行介绍。基矢坐标系通过指定三坐标轴在COMSOL全局坐标系中的指向来完成坐标系的空间定向。
右键单击 “定义节点” ,添加 “坐标系>>基矢坐标系子节点” 。随后,我们既可以在 “基矢坐标系子节点” 的设置菜单中,定义我们所需的空间指向。对于图二所示的桥梁横向主梁,其最长轴也即竹纤维布置方向与全局坐标系的z轴平行,如图十。因此,我们需要将新添加的 “基矢坐标系(sys2)” 的第一轴的空间指向定为(0,0,1),并完成其第二、第三轴的定义。
图 10 横向主梁在全局坐标系中的方向 |
---|
此外,我们需要勾选“假设正交”复选框,将其转换为 正交坐标系 ,以适配正交各向异性材料的内在需求。基矢坐标系的完整定义如 图十一 所示:
图 11 操作:定义基矢坐标系 |
---|
3.4 在“固体力学节点>>线弹性材料子节点”选择与定义固体模型
定义好了各向异性线弹性材料与它的空间指向,我们就需要在我们的 “固体力学节点” 中通过 “线弹性材料子节点” 将它们链接起来。在模型初始化后, “固体力学节点” 中包含一个默认的 “线弹性材料子节点” ,其默认作用域包含我们在几何节点中构件的完整模型几何。
右键单击“固体力学节点”并添加一个新的 “线弹性材料子节点” 。在新的 “线弹性材料子节点” 中,我们首先选择模型的作用域,也即桥梁的横向主梁。
随后,在 “坐标系选择分栏 ”下选择我们定义好的 “基矢坐标系(sys2)” 。
其次,在 “线弹性材料分栏” 中将固体模型选择为 “正交各向异性” 。此时可以看到,杨氏模量、密度等参数均自动选择为 “来自材料” ,由 “材料节点” 导入。我们需要注意的则是我们在“材料节点”中定义的杨氏模量等向量参数,其 材料数据顺序 是否与“线弹性材料分栏中” 要求的一致。对比 材料属性表 、图九 和 图十二 ,我们发现,我们输入的参数顺序是相一致的。这样,便完成了桥梁模型中主横梁竹纤维片材料的定义。
图 12 操作:选择与定义固体模型 |
---|
进一步对纵梁的竹纤维片材料进行定义,我们不再需要新建一个 “**Wood(pine)**子节点” ,而仅需要分别新建一个描述新指向的 “基矢坐标系子节点” 与一个链接材料与坐标系的 “线弹性材料子节点” 。如果在我们需要分析的结构中有着更为复杂的各向异性材料铺设,我们可以重复以上的步骤,即可在COMSOL中定义所有的各向异性材料。
四、案例演示
我们通过两根受力情况相同的矩形空心梁,展示在构件内部铺设不同方向的各向异性材料,对构件的承力能力会产生怎样的影响。下图所展示的两根梁,内部竹纤维片的铺设方向不同,竹纤维材料的第一主方向可由图中的箭头展示。
图 13 横梁内部材料第一主方向的不同指向 |
---|
以悬臂梁的方式定义其受力,两根梁在相同受力情况下产生的形变如 图十四 所示,我们可以很明显的观察到各向异性材料铺设方向所产生的影响。
图 14 横梁的位移场 |
---|
至此,我们就通过理论的简单讨论和案例的演示简单介绍了在COMSOL中进行各向异性结构力学有限元分析的过程。然而,问题并不至于此,更为复杂的,假若在结构中材料的主轴如图15分布,那么我们应该如何构建坐标系分析这一问题呢?
图 15 更为复杂的材料主轴分布 |
---|
这里,我们将运用COMSOL中的另一种物理场接口——“曲线坐标系”来实现。关于曲线坐标系的介绍,我们将在博客《分析具有复杂空间指向的各向异性材料结构》中详细介绍。
五、参考资料
[1] COMSOL博客:通过各种超弹性材料模型对测量数据进行拟合
[2] BASF Thermoplastic Polyurethane Elastomers Elastollan – Material Properties
[3] COMSOL博客:模拟线弹性材料能有多难?