在pycharm里安装pytorch环境-GPU版

该文详细介绍了如何一步步配置GPU环境,包括安装Anaconda、PyCharm,创建和管理conda虚拟环境,安装CUDA和cudnn,以及最后安装PyTorch和torchvision的步骤,确保所有组件都能正确运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、安装Anaconda
在官网下载安装:https://www.anaconda.com/download
2、安装pycharm
https://www.jetbrains.com/pycharm/download/#section=windows
使用社区版即可。
在这里插入图片描述
3、检查conda环境
按win+r,输入cmd回车打开命令窗
在这里插入图片描述

在命令窗内输入conda
在这里插入图片描述

环境无问题。
4、创建虚拟环境:
其中包括环境名称和python版本名称。
格式:

conda create -n 环境名称 python=版本

如,我的环境名称为pytorch_gpu_23.5.30 ,使用python3.8,输入:

conda create -n pytorch_gpu_23.5.30 python=3.8

在这里插入图片描述
在这里插入图片描述
输入conda activate pytorch_gpu_23.5.30激活当前环境后,输入python,检查所安装python版本是否正确,输入exit()退出
在这里插入图片描述
输入conda deactivate退出当前环境
5、设置解释器
打开pycharm,点击文件-设置
在这里插入图片描述
添加解释器
在这里插入图片描述

点击添加解释器,使用现有环境,把刚刚创建的添加进去
在这里插入图片描述

6、安装cuda
打开pytorch官网:https://pytorch.org/点击Get started
在这里插入图片描述
按照自己的需求选择好选项,我的电脑支持版本为CUDA11.7和CUDA11.8
在这里插入图片描述
打开CUDA官网下载地址:https://developer.nvidia.com/cuda-downloads
选择好自己的选项之后点击下载
在这里插入图片描述
下载完成后,直接双击安装,最好安装在默认路径,因为后面需要用到。
在这里插入图片描述
在这里插入图片描述
7、验证cuda是否安装成功
进入路径C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA查看自己的版本安装是否正确

在这里插入图片描述
进入文件夹v11.7-bin,并复制路径,在终端里输入:

cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\bin

然后输入:

nvcc -V

在这里插入图片描述
输出里显示出cuda版本

8、下载cudnn
官网地址:https://developer.nvidia.com/cudnn
下载解压完成后,分别打开三个文件夹,将文件夹里的复制到CUDA路径下同名文件夹中,注意是复制bin、include、lib文件夹里的内容,不是复制整个文件夹过去
在这里插入图片描述
9、验证是否安装成功
进入文件夹:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\extras\demo_suite
在这里插入图片描述

复制路径,在命令行里输入:

cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\extras\demo_suite

然后输入:

bandwidthTest.exe

运行成功出现PASS
在这里插入图片描述
输入:

deviceQuery.exe

运行后会显示安装的CUDA版本,同样也会出现PASS,即代表成功。
在这里插入图片描述
10、安装pytorch
进入pytorch的pip界面显示的网址,我的是:https://download.pytorch.org/whl/cu117
在这里插入图片描述
点击torch,根据自己的需求找到对应版本,python3.8对应cp38,cuda11.7对应cu17
在这里插入图片描述
在这里插入图片描述
下载好之后,下载torchvision,依然按照自己的版本选择,根据下面的表选择适合自己下载的torch的torchvision
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

11、安装torch和torchvision
打开pychram的终端,如,我的文件下载在了F盘的install文件夹内,首先输入cd F:\install进入此文件夹,然后输入:pip install torch-1.13.0+cu117-cp38-cp38-win_amd64.whl安装torch
在这里插入图片描述
再输入pip install torchvision-0.14.0+cu117-cp38-cp38-win_amd64.whl安装torchvision。
12、验证是否安装成功
新建python文件,输入:

import torch
print("hello:{}".format(torch.__version__))

运行后,系统输出安装版本即代表安装成功。
在这里插入图片描述

### PyCharm安装支持 GPUPyTorch 教程 #### 创建 Anaconda 虚拟环境并激活 为了确保最佳兼容性性能,在开始之前建议通过 Anaconda 来管理 Python 环境。这有助于隔离不同项目所需的依赖项。 ```bash conda create -n pytorch_env python=3.8 conda activate pytorch_env ``` 上述命令创建了一个名为 `pytorch_env` 的新环境,并将其激活[^2]。 #### 配置 Conda Pip 使用国内镜像源 为了避免下载过程中遇到网络问题,推荐更改 conda 或 pip 的默认镜像源为中国科学技术大学或其他稳定镜像站点: 对于 conda: ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --set show_channel_urls yes ``` 对于 pip: ```bash pip install -i https://pypi.tuna.tsinghua.edu.cn/simple some-package ``` 这些设置能够显著提高软件包的获取速度成功率[^3]。 #### 安装 CUDA 兼容本的 PyTorch 确认本地已正确安装所需本的 NVIDIA CUDA Toolkit 后,可以通过以下方式安装特定于 GPU 加速的支持库: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 此操作将自动处理所有必要的依赖关系,并为当前环境中配置好适合指定 CUDA 本的 PyTorch 库文件[^1]。 #### 设置 PyCharm 解释器指向新的虚拟环境 启动 PyCharm 并进入 "File -> Settings -> Project: project_name -> Python Interpreter" 页面;点击右侧齿轮图标选择 “Add”,接着挑选刚刚建立好的 anaconda virtualenv 作为项目的解释器路径。 完成以上步骤之后,即可在 PyCharm 内部顺利运行基于 PyTorch 开发的应用程序,并享受来自 GPU 提供的强大计算能力加成。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值