import sympy as sym
E = sym.FiniteSet(1, 2, 3, 4, 5)
A = sym.FiniteSet(1,2,3)
B = sym.FiniteSet(1,2,3,4)
C = sym.FiniteSet(1,2,3,4,5)
D = sym.FiniteSet()
E.is_UniversalSet
print("A的绝对补=",A.complement(E))
print("A \u0305 =",A.complement(E))
print("A=",A)
print("D=",D)
print("1是否属于集合A:",A.has(1))
print("6是否属于集合A:",A.has(6))
print("判断A是否为B的子集:",A <= B) # 判断A是否为B的子集
print("判断A是否为A的子集:",A <= A) # 判断A是否为A的子集
print("判断A是否为B的真子集:",A < B) # 判断A是否为B的真子集
print("判断A是否为A的真子集:",A < A) # 判断A是否为A的真子集
M = sym.FiniteSet(1, 2, 3, 4)
N = sym.FiniteSet(3, 4, 5, 6)
print("M ∪ N=",sym.Union(M,N))
print("M \u222A N=",sym.Union(M,N))
print("M ∩ N=",sym.Intersection(M,N))
print("M \u2229 N=",sym.Intersection(M,N))
M_N = M-N
N_M = N-M
print("M - N=",M-N)
print("N - M=",N-M)
print("M \u2295 N=",sym.Union(M_N,N_M))
print("M \u2295 N=",sym.Union(M,N)-sym.Intersection(M,N))
集合实验课
于 2025-05-12 21:41:21 首次发布