Eigen库常用运算(matlab)

01 Eigen简介

Eigen:基于线性代数的C ++模板库,主要用于矩阵,向量,数值求解器和相关算法。
Eigen库的优点:

  1. 支持整数、浮点数、复数,使用模板编程,可以为特殊的数据结构提供矩阵操作。
  2. OpenCV自带到Eigen的接口。
  3. 支持逐元素、分块、和整体的矩阵操作。
  4. 支持使用Intel MKL加速部分功能。
  5. 支持多线程,对稀疏矩阵支持良好。
  6. 支持常用几何运算,包括旋转矩阵、四元数、矩阵变换、角轴等等。

头文件包含:

#include <Eigen/Dense>//头文件
using namespace Eigen;//域

02数据类型

Eigen库的核心类是 Matrix,由6个参数构成:
Matrix< typename Scalar, int RowsAtCompileTime, int ColsAtCompileTime, int Options = 0, // 默认(无需更改) int MaxRowsAtCompileTime = RowsAtCompileTime, // 默认(最大行数,提前知道极限) int MaxColsAtCompileTime = ColsAtCompileTime // 默认(最大列数,提前知道极限)>
其中:

前三个参数:需要我们指定
后三个参数:默认即可

数据类型
Eigen中的矩阵类型一般都是用类似MatrixNX来表示,可以根据该名字来判断其大小(2,3,4,或X,意思Dynamic)数据类型,比如:

d:表示double类型
f:表示float类型
i:表示整数
c:表示复数complex;

03新建矩阵

矩阵构造
默认构造,分配了大小和内存空间,但没有初始化矩阵元素(里面的数值是随机的,不能使用)
声明定义

//声明定义
Matrix<double, 3, 3> A;               // Fixed rows and cols. Same as Matrix3d.
Matrix<double, 3, Dynamic> B;         // Fixed rows, dynamic cols.
Matrix<double, Dynamic, Dynamic> C;   // Full dynamic. Same as MatrixXd.
Matrix<double, 3, 3, RowMajor> E;     // Row major; default is column-major.
Matrix3f P, Q, R;                     // 3x3 float matrix.
Vector3f x, y, z;                     // 3x1 float matrix.
RowVector3f a, b, c;                  // 1x3 float matrix.
VectorXd v;                           // Dynamic column vector of doubles
double s;   												//标量(常量)

初始化

//Eigen::Vectorid(仅适用于维数小于4情况)
Eigen::Vector2d a(5.0, 6.0);
Eigen::Vector3d b(5.0, 6.0, 7.0);
Eigen::Vector4d c(5.0, 6.0, 7.0, 8.0);
// 对于方阵 
Eigen::Matrix2d mat1;
mat1 << 2,3,2.2,1;
Eigen::Matrix3f mat2;
m << 1, 2, 3,
     4, 5, 6,
     7, 8, 9;
// 一般矩阵
Eigen::MatrixXd mat3(5,2);
mat3 << 2,3,2.2,1,2,3,2,1,2,3;
A << 1, 2, 3,     // Initialize A. The elements can also be
     4, 5, 6,     // matrices, which are stacked along cols
     7, 8, 9;     // and then the rows are stacked.
B << A, A, A;     // B is three horizontally stacked A's.
A.fill(10);       // Fill A with all 10's.

此外,可利用ZeroOnes进行初始化

// Eigen                                    // Matlab
Eigen::MatrixXd::Identity(rows,cols)               // eye(rows,cols)
C.setIdentity(rows,cols)                    // C = eye(rows,cols)
MatrixXd::Zero(rows,cols)                   // zeros(rows,cols)
C.setZero(rows,cols)                        // C = zeros(rows,cols)
MatrixXd::Ones(rows,cols)                   // ones(rows,cols)
C.setOnes(rows,cols)                        // C = ones(rows,cols)
MatrixXd::Random(rows,cols)                 // rand(rows,cols)*2-1            // MatrixXd::Random returns uniform random numbers in (-1, 1).
C.setRandom(rows,cols)                      // C = rand(rows,cols)*2-1
Eigen::VectorXd:默认为列向量
Eigen::VectorXd::LinSpaced(size,low,high)          // linspace(low,high,size)'
v.setLinSpaced(size,low,high)               // v = linspace(low,high,size)'
Eigen::VectorXi::LinSpaced(((hi-low)/step)+1,      // low:step:hi
                    low,low+step*(size-1))  //

04 矩阵索引

矩阵的行数、列数、大小可以通过rows()、cols()和size()来获取。

// Eigen          // Matlab           // comments
x.size()          // length(x)        // vector size
C.rows()          // size(C,1)        // number of rows
C.cols()          // size(C,2)        // number of columns
x(i)              // x(i+1)           // Matlab is 1-based
C(i,j)            // C(i+1,j+1)       //

矩阵元素的访问可以通过"()“操作符完成。例如m(2, 3),矩阵m的第2行第3列元素;
针对向量还提供”[ ]"操作符,注意矩阵则不可如此使用。

矩阵大小重置
resize()conservativeResize ()

对于能够改变大小的动态矩阵,一般会有 resize() 操作。
resize() 如果不改变原矩阵的大小,则原矩阵大小和元素值都不会有改变,但是如果改变了原来矩阵的大小,则会调用矩阵的析构函数,导致矩阵的元素全部为0。
如果想保存矩阵中的元素值,则可以调用 conservativeResize()函数即可。
A.resize(4, 4);   // Runtime error if assertions are on.
B.resize(4, 9);   // Runtime error if assertions are on.
A.resize(3, 3);   // Ok; size didn't change.
B.resize(3, 9);   // Ok; only dynamic cols changed.

矩阵截断函数

// Eigen                           // Matlab
x.head(n)                          // x(1:n)
x.head<n>()                        // x(1:n)
x.tail(n)                          // x(end - n + 1: end)
x.tail<n>()                        // x(end - n + 1: end)
x.segment(i, n)                    // x(i+1 : i+n)
x.segment<n>(i)                    // x(i+1 : i+n)
P.block(i, j, rows, cols)          // P(i+1 : i+rows, j+1 : j+cols)
P.block<rows, cols>(i, j)          // P(i+1 : i+rows, j+1 : j+cols)
P.row(i)                           // P(i+1, :)
P.col(j)                           // P(:, j+1)
P.leftCols<cols>()                 // P(:, 1:cols)
P.leftCols(cols)                   // P(:, 1:cols)
P.middleCols<cols>(j)              // P(:, j+1:j+cols)
P.middleCols(j, cols)              // P(:, j+1:j+cols)
P.rightCols<cols>()                // P(:, end-cols+1:end)
P.rightCols(cols)                  // P(:, end-cols+1:end)
P.topRows<rows>()                  // P(1:rows, :)
P.topRows(rows)                    // P(1:rows, :)
P.middleRows<rows>(i)              // P(i+1:i+rows, :)
P.middleRows(i, rows)              // P(i+1:i+rows, :)
P.bottomRows<rows>()               // P(end-rows+1:end, :)
P.bottomRows(rows)                 // P(end-rows+1:end, :)
P.topLeftCorner(rows, cols)        // P(1:rows, 1:cols)
P.topRightCorner(rows, cols)       // P(1:rows, end-cols+1:end)
P.bottomLeftCorner(rows, cols)     // P(end-rows+1:end, 1:cols)
P.bottomRightCorner(rows, cols)    // P(end-rows+1:end, end-cols+1:end)
P.topLeftCorner<rows,cols>()       // P(1:rows, 1:cols)
P.topRightCorner<rows,cols>()      // P(1:rows, end-cols+1:end)
P.bottomLeftCorner<rows,cols>()    // P(end-rows+1:end, 1:cols)
P.bottomRightCorner<rows,cols>()   // P(end-rows+1:end, end-cols+1:end)

05数学运算

加减乘(数乘和点乘)除

// All the same as Matlab, but matlab doesn't have *= style operators.
// Matrix-vector.  Matrix-matrix.   Matrix-scalar.
y  = M*x;          R  = P*Q;        R  = P*s;
a  = b*M;          R  = P - Q;      R  = s*P;
a *= M;            R  = P + Q;      R  = P/s;
                   R *= Q;          R  = s*P;
                   R += Q;          R *= s;
                   R -= Q;          R /= s;

// Vectorized operations on each element independently
// Eigen                       // Matlab
R = P.cwiseProduct(Q);         // R = P .* Q 矩阵点乘
R = P.array() * s.array();     // R = P .* s 
R = P.cwiseQuotient(Q);        // R = P ./ Q
R = P.array() / Q.array();     // R = P ./ Q
R = P.array() + s.array();     // R = P + s
R = P.array() - s.array();     // R = P - s
R.array() += s;                // R = R + s
R.array() -= s;                // R = R - s
R.array() < Q.array();         // R < Q
R.array() <= Q.array();        // R <= Q
R.cwiseInverse();              // 1 ./ P
R.array().inverse();           // 1 ./ P
R.array().sin()                // sin(P)
R.array().cos()                // cos(P)
R.array().pow(s)               // P .^ s
R.array().square()             // P .^ 2
R.array().cube()               // P .^ 3
R.cwiseSqrt()                  // sqrt(P)
R.array().sqrt()               // sqrt(P)
R.array().exp()                // exp(P)
R.array().log()                // log(P)
R.cwiseMax(P)                  // max(R, P)
R.array().max(P.array())       // max(R, P)
R.cwiseMin(P)                  // min(R, P)
R.array().min(P.array())       // min(R, P)
R.cwiseAbs()                   // abs(P)
R.array().abs()                // abs(P)
R.cwiseAbs2()                  // abs(P.^2)
R.array().abs2()               // abs(P.^2)
(R.array() < s).select(P,Q );  // (R < s ? P : Q)
R = (Q.array()==0).select(P,R) // R(Q==0) = P(Q==0)
R = P.unaryExpr(ptr_fun(func)) // R = arrayfun(func, P)   // with: scalar func(const scalar &x);

更多函数处理

// Matrix slicing and blocks. All expressions listed here are read/write.
// Templated size versions are faster. Note that Matlab is 1-based (a size N
// vector is x(1)...x(N)).
/******************************************************************************/
/*                  PLEASE HELP US IMPROVING THIS SECTION                     */
/* Eigen 3.4 supports a much improved API for sub-matrices, including,        */
/* slicing and indexing from arrays:                                          */
/* http://eigen.tuxfamily.org/dox-devel/group__TutorialSlicingIndexing.html   */
/******************************************************************************/


// Of particular note is Eigen's swap function which is highly optimized.
// Eigen                           // Matlab
R.row(i) = P.col(j);               // R(i, :) = P(:, j)
R.col(j1).swap(mat1.col(j2));      // R(:, [j1 j2]) = R(:, [j2, j1])

// Views, transpose, etc;
/******************************************************************************/
/*                  PLEASE HELP US IMPROVING THIS SECTION                     */
/* Eigen 3.4 supports a new API for reshaping:                                */
/* http://eigen.tuxfamily.org/dox-devel/group__TutorialReshape.html           */
/******************************************************************************/
// Eigen                           // Matlab
R.adjoint()                        // R'	共轭转置矩阵
R.transpose()                      // R.' or conj(R')       矩阵转置// Read-write
R.transposeInPlace(); // 直接在a上操作,对于自身的操作,都有专门的函数,例如对自身的转置
R.diagonal()                       // diag(R)               // Read-write
x.asDiagonal()                     // diag(x)
R.transpose().colwise().reverse()  // rot90(R)              // Read-write
R.rowwise().reverse()              // fliplr(R)
R.colwise().reverse()              // flipud(R)
R.replicate(i,j)                   // repmat(P,i,j)

// Reductions.
int r, c;
// Eigen                  // Matlab
R.minCoeff()              // min(R(:))
R.maxCoeff()              // max(R(:))
s = R.minCoeff(&r, &c)    // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
s = R.maxCoeff(&r, &c)    // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
R.sum()                   // sum(R(:))
R.colwise().sum()         // sum(R)
R.rowwise().sum()         // sum(R, 2) or sum(R')'
R.prod()                  // prod(R(:))
R.colwise().prod()        // prod(R)
R.rowwise().prod()        // prod(R, 2) or prod(R')'
R.trace()                 // trace(R)
R.all()                   // all(R(:))
R.colwise().all()         // all(R)
R.rowwise().all()         // all(R, 2)
R.any()                   // any(R(:))
R.colwise().any()         // any(R)
R.rowwise().any()         // any(R, 2)

// Dot products, norms, etc.
// Eigen                  // Matlab
x.norm()                  // norm(x).    Note that norm(R) doesn't work in Eigen.
x.squaredNorm()           // dot(x, x)   Note the equivalence is not true for complex
x.dot(y)                  // dot(x, y) //点积/点乘计算
x.cross(y)                // cross(x, y) Requires #include <Eigen/Geometry> 叉积,向量长度必须为3

 Type conversion
// Eigen                  // Matlab
A.cast<double>();         // double(A)
A.cast<float>();          // single(A)
A.cast<int>();            // int32(A)
A.real();                 // real(A)
A.imag();                 // imag(A)
// if the original type equals destination type, no work is done

// Note that for most operations Eigen requires all operands to have the same type:
MatrixXf F = MatrixXf::Zero(3,3);
A += F;                // illegal in Eigen. In Matlab A = A+F is allowed
A += F.cast<double>(); // F converted to double and then added (generally, conversion happens on-the-fly)

// Eigen can map existing memory into Eigen matrices.
float array[3];
Vector3f::Map(array).fill(10);            // create a temporary Map over array and sets entries to 10
int data[4] = {1, 2, 3, 4};
Matrix2i mat2x2(data);                    // copies data into mat2x2
Matrix2i::Map(data) = 2*mat2x2;           // overwrite elements of data with 2*mat2x2
MatrixXi::Map(data, 2, 2) += mat2x2;      // adds mat2x2 to elements of data (alternative syntax if size is not know at compile time)

// Solve Ax = b. Result stored in x. Matlab: x = A \ b.
x = A.ldlt().solve(b));  // A sym. p.s.d.    #include <Eigen/Cholesky>
x = A.llt() .solve(b));  // A sym. p.d.      #include <Eigen/Cholesky>
x = A.lu()  .solve(b));  // Stable and fast. #include <Eigen/LU>
x = A.qr()  .solve(b));  // No pivoting.     #include <Eigen/QR>
x = A.svd() .solve(b));  // Stable, slowest. #include <Eigen/SVD>
// .ldlt() -> .matrixL() and .matrixD()
// .llt()  -> .matrixL()
// .lu()   -> .matrixL() and .matrixU()
// .qr()   -> .matrixQ() and .matrixR()
// .svd()  -> .matrixU(), .singularValues(), and .matrixV()

// Eigenvalue problems
// Eigen                          // Matlab
A.eigenvalues();                  // eig(A);
EigenSolver<Matrix3d> eig(A);     // [vec val] = eig(A)
eig.eigenvalues();                // diag(val)
eig.eigenvectors();               // vec
// For self-adjoint matrices use SelfAdjointEigenSolver<>

参考:[Eigen学习笔记(3)-矩阵和向量的运算]
C++Eigen库矩阵常见操作
Eigen库 介绍
eigen里如何进行复数矩阵的赋值和运算操作

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值