【2018CVPR】Learning to Adapt Structured Output Space for Semantic Segmentation-AdaptSegnet 论文笔记

目录

1.背景:

2.本文创新点

创新点1:

创新点 2:

创新点 3:

3.损失函数

4.实验:


1.背景:

基于 CNN 的网络模型需要大量的标注来覆盖场景的所有可能的变化,尤其当训练( ) 图像和测试 ( 目标 ) 图像之间存在较大的差异时,标注的工程量巨大。根据观察, 源域和目标域图像虽然在外观差异比较大,但是他们的空间布局和局部上下文信息相似性比较高。
https://www.cnblogs.com/ethan-tao/p/16213986.html 代码分析

2.本文创新点

创新点1

基于对抗学习,提出了像素级语义分割的域自适应方法模型:

 

        首先使用源域图像 I s ( 有标注 ) 训练优化分割网络 G ,并输出 P s 。然后使用分割网络 G 预测目标域图像 I t ( 不带标注 ) 的输出 P t 。我们的目标是使源图像和目标图像的分割预测 P s P t 彼此接近,所以我们使用这两个预测结果作为鉴别器 D 的输入,以区分输入是来自源域还 是目标域。因为存在对抗损失 L adv ,反向传播来自 D G 的梯度,使得分割网络 G 在目标域中生成与源预测相似的分割分布。

创新点 2

不同于以往在特征层进行调整方法,这篇文章在输出空间进行适配,可以有
效地对齐源域和目标域图像的场景分布和局部上下文信息。

创新点 3

采用多层对抗学习机制来适配分割模型不同层的特征,这可以提升性能。上
图中,加入两级 DA

3.损失函数

下面是单级自适应模型各自训练的损失函数:

 

分割网络 G 的训练: Ys ground truth 标注, Ps 是输出。
鉴别器 D 的训练: z=0 ,表示来自目标域, z=1 表示来自源域。 为了 Ps Pt 的分布更加接近,对抗损失:

 

 

多级自适应模型进行一定的修改即可。

4.实验:

训练数据集: GTA5 SYNTHIA 数据集的 synthetic 图像
测试数据集:测试集用的是 Cityscapes 数据集的 real-word 图像
以及还在还在 Cross-City 数据集上做了跨城市的任务实验。所提出的方法在准确性和视觉质量方面优于最先进的方法
​​​​​​​

 

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值