MCP技术及Manus调研

技术调研

概述

MCP(Model Context Protocol) 是一个开放协议,它标准化了应用程序如何向 LLM 提供上下文。可以将 MCP 视为 AI 应用程序的 USB-C 端口。就像 USB-C 为连接设备与各种外设和配件提供了标准化方式一样,MCP 为连接 AI 模型与不同数据源和工具提供了标准化方式。

MCP使用手册:https://mcp-docs.cn/tutorials/building-mcp-with-llms

MCP 架构

  1. Client(客户端)
  • 功能:负责与用户或应用程序交互,发起请求并调用 MCP 协议中的资源或工具。
  1. Resources(资源)
  • 定义:可被 LLM 读取的“类似文件”的数据,例如 API 响应、数据库记录、文档内容、用户输入的文本等。
  1. Tools(工具)
  • 定义:可被 LLM 调用的函数或服务(例如搜索网络、调用数据库、执行代码等)。
  1. Prompts(提示模板)
  • 定义:预先设计的模板,帮助用户或系统生成更高效的提示词(Prompt)。

MCP开发

1.定义工具(Tool)
使用装饰器(如 @mcp.tool())暴露功能,通过文档字符串描述用途。

Plain Text
from mcp.server.fastmcp import FastMCP
import os
mcp = FastMCP("My MCP Server")
@mcp.tool()
def list_desktop_files() -> list:
    """
获取当前用户桌面上的所有文件列表(macOS专属实现)"""
    desktop_path = os.path.expanduser("~/Desktop")

    return os.listdir(desktop_path)

2.添加资源(Resource)和提示(Prompt)

  • 资源:通过 URI 模板暴露数据。

Plain Text
@mcp.resource("config://app_settings")
def get_app_config() -> dict:
    return {"theme": "dark", "language": "zh-CN"}

  • 提示:定义与 AI 交互的上下文模板

Plain Text
@mcp.prompt()
def code_review_prompt(code: str) -> str:
    return f"请审查以下代码并指出问题:\n\n{code}"

3.配置传输方式

  • 本地通信:使用 stdio(标准输入输出)

Plain Text
if __name__ == "__main__":
    mcp.run(transport='stdio')

  • 远程通信:使用 HTTP 或 SSE(Server-Sent Events)。

4.客户端配置与测试

  • 配置 MCP 客户端
    在客户端(如 CLINE 或 Cursor)中配置服务器路径:

Plain Text
{
  "mcpServers": {
    "list_desktop_files": {
      "command": "python3",
      "args": ["/Users/[USER_NAME]/[YOUR_PATH]/custom_mcp.py"]
    }
  }
}

  • 调用工具
    通过自然语言指令调用工具
  1. 高级实践与优化
  • 安全性:确保 API 调用安全,避免敏感信息泄露。
  • 性能优化:对频繁访问的数据源进行缓存。
  • 调试工具:使用 MCP 提供的调试器和交互式检查器。

AI-MCP应用流程

  1. 虚拟机
  • 功能:提供计算资源支持 AI的运行环境,支持弹性扩展。
  1. 任务管理系统
  • 功能:协调多个 AI Agent 的任务分配与进度管理。
  • 子模块:
  • 需求解析引擎:将用户输入的非结构化需求解析为结构化任务列表。
  • 任务管理核心:识别任务间的先后顺序,实时监控任务进度
  • AI 决策系统:根据任务复杂度推荐拆分方式
  1. 子任务 Agent
  • 功能:执行具体子任务的 AI 实体,可基于 MCP 调用资源、工具或 Prompts
  1. MCP 工具与虚拟机资源
  • 整合方式:MAUNS 通过 MCP 协议直接调用云端虚拟机的资源(如 GPU 算力、存储空间)和工具(如代码解释器、API 接口)

Manus调研

技术调研

技术新颖点总结

1.直接调用工具,实现工作闭环(数字打工人)

  • Manus通过MCP协议,将工具调用抽象为统一接口,支持327个预置工具(如Python、Selenium、OCR引擎等)的标准化调用。
  • 从意图识别到交付的全流程自动化:用户输入需求后,系统通过任务初始化、步骤规划、执行、验证和归纳整理的闭环流程,直接输出最终结果。

2.ANP+动态DAG,实现多agent有条不紊,相互协作(去中心化)

  • ANP基于 P2P架构 和 DID(Decentralized Identity),允许子Agent通过标准化接口直接通信,无需依赖中心服务器。
  • 动态DAG引擎任务规划
    任务以邻接表形式存储,通过拓扑排序确保无环依赖,支持实时路径优化(如旅行规划中根据景点开放时间调整顺序)。
  • 软/硬依赖管理:
    区分可并行执行的软依赖(如数据清洗与图表生成)和必须顺序执行的硬依赖(如代码编写→测试),最大化并行效率。

3.资源调度与管理(优化算力)

  • 改进型KV缓存压缩策略,在A100 GPU上实现93%显存利用率(行业平均约35%-40%)
  • 容器化隔离技术:每个任务在独立Docker容器中运行,避免任务间干扰,实测并发处理能力达传统架构的3.2倍。
  • 断点续传与恢复机制:Checkpointing机制:任务每15分钟保存进度,GPU内存恢复损耗控制在5-8%,确保中断后快速恢复。

4.检测agent,进行自动校准(减少幻觉,保持高效)

  • 三级检测机制:
  • 触发条件检测:置信度阈值(模型输出熵值 >1.2)、工具返回异常(如 HTTP 503)、数值波动超限(超过预计的波动范围)。
  • 质量检测方法:多模型校验(Claude-3 vs. GPT-4)、工具链复核(Matlab 验证 Python 结果)、时间维度验证。
  • 自校正流程:局部重试(最多 3 次)、替代方案切换(如用 BeautifulSoup 替代 Scrapy)、架构调整(动态修改 DAG 结构)。

技术框架

Manus 的多智能体协作框架通过规划agentMind)、执行agentHand)、验证agentVerifier三大核心组件,结合通信协议(MCP/ANP动态 DAG 引擎多模型协同推理、资源调度策略及自校正机制,形成闭环任务处理系统。具体协作流程如下:

  1. 任务初始化与规划
  • 用户输入任务后,规划agent(Mind)通过改进型蒙特卡洛树搜索(MCTS)解析用户意图,将任务拆解为可执行的子任务链,生成动态 DAG(有向无环图),明确任务依赖关系与执行顺序
  • 动态 DAG 引擎接管任务图,通过拓扑排序确保无环,并基于优先级算法(紧急性、资源准备度等多维度权重)分配算力,调度任务执行。
  1. 任务执行与工具调用
  • 执行agent(Hand)根据 DAG 调用预置工具链(如 Python、Selenium 等),通过MCP 协议与工具标准化交互(JSON-RPC 2.0 格式,支持加密认证)。
  • 多模型协同推理介入:小模型(如 Qwen-7B)识别任务意图,动态选择大模型组合(如金融分析调用 Qwen-72B,创意生成调用 Claude3.5),通过加权投票或置信度阈值融合结果。
  1. 质量验证与自校正
  • 验证agent(Verifier)通过三级检测机制(置信度阈值、工具异常、数值波动)监控输出
  • 置信度阈值检测:评估模型输出的不确定性。
  • 工具返回异常检测:监控API调用或其他工具的执行状态。
  • 数值波动超限检测:检查关键数值是否超出合理范围
  • 检测到异常时,通过ANP 协议触发修复策略:
  • 局部重试(如 API 调用失败重试 3 次);
  • 替代方案切换(如更换工具链或数据源);
  • 架构调整(动态修改 DAG,新增清洗步骤或校验节点)。
  • 修复后重新进入执行 - 验证循环,直至结果通过质量检测。

参考:

Manus 官网:https://manus.im/

Manus 百科:https://baike.baidu.com/item/Manus/65463546

OpenManus:https://github.com/mannaandpoem/OpenManus/

Manus Tools:https://gist.github.com/jlia0/db0a9695b3ca7609c9b1a08dcbf872c9

CodeAct论文:https://arxiv.org/abs/2402.01030

用户体验新颖点

主动向用户确认信息

优点

  • Manus 通过语义分析和规则引擎,自动识别用户指令中的模糊性(如关键词缺失、逻辑不完整),并主动询问澄清。
  • 避免因误解导致的任务返工,对比传统AI被动等待用户纠错,Manus 的主动性减少了用户的“二次澄清”负担

触发场景:

  • 任务理解模糊或存在歧义时
  • 执行遇阻或异常时、
  • 关键决策节点需用户确认时

触发条件

  • 特定任务的流程化设计
  • 对于高频或复杂任务(如简历筛选、旅行规划、数据分析),Manus 会通过 场景定制 预设流程,明确关键节点的确认逻辑。
  • 技术实现:针对特定场景对模型进行微调(Fine-tuning),使其更熟悉该领域的术语和需求,并在关键节点插入确认逻辑
  • Prompt 设计
  •  Agent-Prompt(代理提示词)设计,即通过预设的规则和提示词模板,让模型自主判断何时需要用户澄清信息。

虚拟机全过程展示

核心:增强用户掌控感与沉浸感

1)透明化操作流程

  • 问题:传统 AI 工具(如 GPT、Claude)通常以“黑箱”形式输出结果,用户无法直观感知 AI 的思考过程。
  • Manus 的创新:
    Manus 通过虚拟机界面实时展示其“自主操作”的全过程(如浏览器操作、代码执行、数据抓取等),用户可以看到 AI 如何一步步完成任务。例如,当用户要求分析股票数据时,Manus 会展示其联网搜索数据、调用 Python 脚本分析、生成图表的完整流程。
  • 用户价值:
    这种 过程可视化 让用户对 AI 的能力有更直观的认知,减少了对“结果可信度”的疑虑。用户不再被动接受结果,而是能观察到 AI 的“工作状态”,从而增强 掌控感 和 信任感。

2)沉浸式交互体验

  • 技术实现:Manus 的 UI 设计模拟了真实操作环境(如浏览器窗口、终端命令行),用户能观察到 AI 的“鼠标点击”“键盘输入”等动作,仿佛在观看真人操作电脑。
  • 心理影响:
    这种设计利用了 “拟人性”(Anthropomorphism)的心理效应,让用户更容易将 AI 视为一个“助手”而非工具,从而降低使用门槛。例如,普通用户即使不懂编程,也能通过观察 AI 的操作流程理解其逻辑。

3)即时反馈与错误修正

  • 动态交互:用户可以在流程中随时干预(如暂停、调整参数),Manus 会根据反馈调整后续步骤。例如,当 AI 在筛选简历时,用户可临时修改排序规则,Manus 会重新执行任务。
  • 容错性:如果 AI 操作出错(如误判数据),用户能直接指出问题,系统会记录并优化后续行为。这种 实时纠错机制 提升了用户体验的灵活性。

积分订阅制

优点:

  1. 灵活的任务定价
  • 积分制按任务复杂度和耗时动态消耗,用户可根据需求分配资源(如简单任务200-300积分,复杂任务超900积分)
  1. 降低入门门槛
  • 新用户注册可获1000积分奖励,每日登录再领300积分(当日有效),降低初次体验成本。
  • 免费用户可执行部分基础任务(如生成表格、直播脚本),吸引潜在付费用户。
  1. 透明化资源分配
  • 通过积分量化任务成本,用户可预估任务消耗(例如“设计个人网站”需600积分),便于规划预算。

优化空间

技术层面从:

  • 模型性能与成本平衡:采用混合模型架构,针对特定领域(如金融、医疗)引入轻量级垂直模型(如Qwen-Finance),减少通用模型的计算开销。

产品层面:

  • 任务引导与交互流程优化:增加智能模板库,例如提供“旅行规划”“财务分析”等模板,用户只需填写关键参数(如预算、时间范围),系统自动填充任务细节。
  • 个性化:增强用户画像建模,结合历史任务数据(如偏好PPT设计风格、常用工具链)生成更精准的个性化策略。
  • 增加多用户协作功能:允许多人共同编辑任务DAG,实时同步修改内容

### MCP技术的当前发展现状 MCP(Model Context Protocol)作为一种新兴的开放协议,目前正处在快速发展阶段。从技术成熟度的角度看,它位于“技术触发期”向“期望膨胀期”的过渡阶段[^1]。这意味着尽管MCP的核心概念已被广泛接受,但在具体实现和标准化方面仍然存在较大的改进空间。 #### 技术标准与工具链 现阶段,MCP的标准规范正在持续演进中,尚未达到完全定型的状态。与此同时,虽然一些基础性的开发工具已经面世,但更为复杂的高级工具仍在研发过程中[^1]。这表明对于开发者而言,使用MCP可能还需要一定的适应过程,尤其是在处理较为复杂的场景时。 #### 市场采纳情况 就市场接纳程度而言,MCP主要受到早期采用者以及部分技术领先的企业的青睐。这些先行者已经开始尝试将其融入自身的业务流程之中,从而探索更多潜在的应用可能性。然而,整体市场的普及率尚低,生态系统的构建也未形成完整的闭环。 --- ### 发展趋势分析 随着AI技术的进步及其与其他领域的深度融合,MCP预计将在以下几个方面展现出显著的发展潜力: #### AI与MCP的协同发展 未来的几年里,AI技术MCP之间的联系将会变得更加紧密。这种结合不仅可以提升现有应用的表现水平,还能够开拓诸如工业自动化、金融科技等诸多全新的应用场景[^2]。借助更深层次的合作关系,最终有望达成高度智能化且极具个性化特征的服务体验。 #### 跨行业渗透能力增强 除了传统的软件工程领域外,MCP还将逐步扩展至其他非传统计算密集型行业中去。例如,在制造业当中利用该协议来简化生产线上的设备间通信;或者是在金融服务部门内部用于加强风险评估机制等等[^2]。此类跨界合作将进一步拓宽MCP的实际效用范围。 --- ### 未来发展方向预测 展望未来,以下是几个值得重点关注的方向: - **统一接口完善**:继续强化统一执行接口的功能特性,使其能更好地满足不同类型的客户需求。 - **人机协作深化**:进一步挖掘人在整个工作流中的价值所在,使得人类可以更加便捷地参与到由机器主导的任务环节里面来。 - **动态工具链优化**:提高动态工具链的选择精度与编排灵活性,让AI智能体可以根据具体情况做出最优决策。 ```python # 示例代码展示如何通过Python库访问MCP服务端口 import mcp_client def connect_to_mcp_server(server_address, port=8080): client = mcp_client.MCPServerClient() response = client.connect(server_address, port) return response.status_code if __name__ == "__main__": status = connect_to_mcp_server("localhost", 9000) print(f"MCP server connection result: {status}") ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值