MCP(Model Context Protocol) 是一个开放协议,它标准化了应用程序如何向 LLM 提供上下文。可以将 MCP 视为 AI 应用程序的 USB-C 端口。就像 USB-C 为连接设备与各种外设和配件提供了标准化方式一样,MCP 为连接 AI 模型与不同数据源和工具提供了标准化方式。
MCP使用手册:https://mcp-docs.cn/tutorials/building-mcp-with-llms
MCP 架构
- Client(客户端)
- 功能:负责与用户或应用程序交互,发起请求并调用 MCP 协议中的资源或工具。
- Resources(资源)
- 定义:可被 LLM 读取的“类似文件”的数据,例如 API 响应、数据库记录、文档内容、用户输入的文本等。
- Tools(工具)
- 定义:可被 LLM 调用的函数或服务(例如搜索网络、调用数据库、执行代码等)。
- Prompts(提示模板)
- 定义:预先设计的模板,帮助用户或系统生成更高效的提示词(Prompt)。
MCP开发
1.定义工具(Tool)
使用装饰器(如 @mcp.tool())暴露功能,通过文档字符串描述用途。
Plain Text |
2.添加资源(Resource)和提示(Prompt)
- 资源:通过 URI 模板暴露数据。
Plain Text |
- 提示:定义与 AI 交互的上下文模板
Plain Text |
3.配置传输方式
- 本地通信:使用 stdio(标准输入输出)
Plain Text |
- 远程通信:使用 HTTP 或 SSE(Server-Sent Events)。
4.客户端配置与测试
- 配置 MCP 客户端
在客户端(如 CLINE 或 Cursor)中配置服务器路径:
Plain Text |
- 调用工具
通过自然语言指令调用工具
- 高级实践与优化
- 安全性:确保 API 调用安全,避免敏感信息泄露。
- 性能优化:对频繁访问的数据源进行缓存。
- 调试工具:使用 MCP 提供的调试器和交互式检查器。
AI-MCP应用流程
- 虚拟机
- 功能:提供计算资源支持 AI的运行环境,支持弹性扩展。
- 任务管理系统
- 功能:协调多个 AI Agent 的任务分配与进度管理。
- 子模块:
- 需求解析引擎:将用户输入的非结构化需求解析为结构化任务列表。
- 任务管理核心:识别任务间的先后顺序,实时监控任务进度
- AI 决策系统:根据任务复杂度推荐拆分方式
- 子任务 Agent
- 功能:执行具体子任务的 AI 实体,可基于 MCP 调用资源、工具或 Prompts
- MCP 工具与虚拟机资源
- 整合方式:MAUNS 通过 MCP 协议直接调用云端虚拟机的资源(如 GPU 算力、存储空间)和工具(如代码解释器、API 接口)
Manus调研
1.直接调用工具,实现工作闭环(数字打工人)
- Manus通过MCP协议,将工具调用抽象为统一接口,支持327个预置工具(如Python、Selenium、OCR引擎等)的标准化调用。
- 从意图识别到交付的全流程自动化:用户输入需求后,系统通过任务初始化、步骤规划、执行、验证和归纳整理的闭环流程,直接输出最终结果。
2.ANP+动态DAG,实现多agent有条不紊,相互协作(去中心化)
- ANP基于 P2P架构 和 DID(Decentralized Identity),允许子Agent通过标准化接口直接通信,无需依赖中心服务器。
- 动态DAG引擎任务规划
任务以邻接表形式存储,通过拓扑排序确保无环依赖,支持实时路径优化(如旅行规划中根据景点开放时间调整顺序)。
- 软/硬依赖管理:
区分可并行执行的软依赖(如数据清洗与图表生成)和必须顺序执行的硬依赖(如代码编写→测试),最大化并行效率。
3.资源调度与管理(优化算力)
- 改进型KV缓存压缩策略,在A100 GPU上实现93%显存利用率(行业平均约35%-40%)
- 容器化隔离技术:每个任务在独立Docker容器中运行,避免任务间干扰,实测并发处理能力达传统架构的3.2倍。
- 断点续传与恢复机制:Checkpointing机制:任务每15分钟保存进度,GPU内存恢复损耗控制在5-8%,确保中断后快速恢复。
4.检测agent,进行自动校准(减少幻觉,保持高效)
- 三级检测机制:
- 触发条件检测:置信度阈值(模型输出熵值 >1.2)、工具返回异常(如 HTTP 503)、数值波动超限(超过预计的波动范围)。
- 质量检测方法:多模型校验(Claude-3 vs. GPT-4)、工具链复核(Matlab 验证 Python 结果)、时间维度验证。
- 自校正流程:局部重试(最多 3 次)、替代方案切换(如用 BeautifulSoup 替代 Scrapy)、架构调整(动态修改 DAG 结构)。
Manus 的多智能体协作框架通过规划agent(Mind)、执行agent(Hand)、验证agent(Verifier)三大核心组件,结合通信协议(MCP/ANP)、动态 DAG 引擎、多模型协同推理、资源调度策略及自校正机制,形成闭环任务处理系统。具体协作流程如下:
- 任务初始化与规划
- 用户输入任务后,规划agent(Mind)通过改进型蒙特卡洛树搜索(MCTS)解析用户意图,将任务拆解为可执行的子任务链,生成动态 DAG(有向无环图),明确任务依赖关系与执行顺序
- 动态 DAG 引擎接管任务图,通过拓扑排序确保无环,并基于优先级算法(紧急性、资源准备度等多维度权重)分配算力,调度任务执行。
- 任务执行与工具调用
- 执行agent(Hand)根据 DAG 调用预置工具链(如 Python、Selenium 等),通过MCP 协议与工具标准化交互(JSON-RPC 2.0 格式,支持加密认证)。
- 多模型协同推理介入:小模型(如 Qwen-7B)识别任务意图,动态选择大模型组合(如金融分析调用 Qwen-72B,创意生成调用 Claude3.5),通过加权投票或置信度阈值融合结果。
- 质量验证与自校正
- 验证agent(Verifier)通过三级检测机制(置信度阈值、工具异常、数值波动)监控输出
- 置信度阈值检测:评估模型输出的不确定性。
- 工具返回异常检测:监控API调用或其他工具的执行状态。
- 数值波动超限检测:检查关键数值是否超出合理范围
- 检测到异常时,通过ANP 协议触发修复策略:
- 局部重试(如 API 调用失败重试 3 次);
- 替代方案切换(如更换工具链或数据源);
- 架构调整(动态修改 DAG,新增清洗步骤或校验节点)。
- 修复后重新进入执行 - 验证循环,直至结果通过质量检测。
参考:
Manus 官网:https://manus.im/
Manus 百科:https://baike.baidu.com/item/Manus/65463546
OpenManus:https://github.com/mannaandpoem/OpenManus/
Manus Tools:https://gist.github.com/jlia0/db0a9695b3ca7609c9b1a08dcbf872c9
CodeAct论文:https://arxiv.org/abs/2402.01030
优点
- Manus 通过语义分析和规则引擎,自动识别用户指令中的模糊性(如关键词缺失、逻辑不完整),并主动询问澄清。
- 避免因误解导致的任务返工,对比传统AI被动等待用户纠错,Manus 的主动性减少了用户的“二次澄清”负担
触发场景:
- 任务理解模糊或存在歧义时
- 执行遇阻或异常时、
- 关键决策节点需用户确认时
触发条件
- 特定任务的流程化设计
- 对于高频或复杂任务(如简历筛选、旅行规划、数据分析),Manus 会通过 场景定制 预设流程,明确关键节点的确认逻辑。
- 技术实现:针对特定场景对模型进行微调(Fine-tuning),使其更熟悉该领域的术语和需求,并在关键节点插入确认逻辑
- Prompt 设计
- Agent-Prompt(代理提示词)设计,即通过预设的规则和提示词模板,让模型自主判断何时需要用户澄清信息。
核心:增强用户掌控感与沉浸感
| |
1)透明化操作流程
- 问题:传统 AI 工具(如 GPT、Claude)通常以“黑箱”形式输出结果,用户无法直观感知 AI 的思考过程。
- Manus 的创新:
Manus 通过虚拟机界面实时展示其“自主操作”的全过程(如浏览器操作、代码执行、数据抓取等),用户可以看到 AI 如何一步步完成任务。例如,当用户要求分析股票数据时,Manus 会展示其联网搜索数据、调用 Python 脚本分析、生成图表的完整流程。
- 用户价值:
这种 过程可视化 让用户对 AI 的能力有更直观的认知,减少了对“结果可信度”的疑虑。用户不再被动接受结果,而是能观察到 AI 的“工作状态”,从而增强 掌控感 和 信任感。
2)沉浸式交互体验
- 技术实现:Manus 的 UI 设计模拟了真实操作环境(如浏览器窗口、终端命令行),用户能观察到 AI 的“鼠标点击”“键盘输入”等动作,仿佛在观看真人操作电脑。
- 心理影响:
这种设计利用了 “拟人性”(Anthropomorphism)的心理效应,让用户更容易将 AI 视为一个“助手”而非工具,从而降低使用门槛。例如,普通用户即使不懂编程,也能通过观察 AI 的操作流程理解其逻辑。
3)即时反馈与错误修正
- 动态交互:用户可以在流程中随时干预(如暂停、调整参数),Manus 会根据反馈调整后续步骤。例如,当 AI 在筛选简历时,用户可临时修改排序规则,Manus 会重新执行任务。
- 容错性:如果 AI 操作出错(如误判数据),用户能直接指出问题,系统会记录并优化后续行为。这种 实时纠错机制 提升了用户体验的灵活性。
| |
优点:
- 灵活的任务定价
- 积分制按任务复杂度和耗时动态消耗,用户可根据需求分配资源(如简单任务200-300积分,复杂任务超900积分)
- 降低入门门槛
- 新用户注册可获1000积分奖励,每日登录再领300积分(当日有效),降低初次体验成本。
- 免费用户可执行部分基础任务(如生成表格、直播脚本),吸引潜在付费用户。
- 透明化资源分配
- 通过积分量化任务成本,用户可预估任务消耗(例如“设计个人网站”需600积分),便于规划预算。
技术层面从:
- 模型性能与成本平衡:采用混合模型架构,针对特定领域(如金融、医疗)引入轻量级垂直模型(如Qwen-Finance),减少通用模型的计算开销。
产品层面:
- 任务引导与交互流程优化:增加智能模板库,例如提供“旅行规划”“财务分析”等模板,用户只需填写关键参数(如预算、时间范围),系统自动填充任务细节。
- 个性化:增强用户画像建模,结合历史任务数据(如偏好PPT设计风格、常用工具链)生成更精准的个性化策略。
- 增加多用户协作功能:允许多人共同编辑任务DAG,实时同步修改内容