复向量内积例题详解
定义
设x,y∈Cnx,y \in C^nx,y∈Cn,其内积
(x,y)=x1y1‾+x2y2‾+...+xnyn‾=∑i=1nxiyi‾ (x,y) = x_1 \overline{y_1} + x_2 \overline{y_2} + ... + x_n \overline{y_n} = {\displaystyle {\sum _{i=1}^{n}{x_{i} \overline{y_{i} }}}} (x,y)=x1y1+x2y2+...+xnyn=i=1∑nxiyi
其中,CCC代表复数域。

计算示例
问题引入
现在有两个复向量:
x=(2+i,3+i),y=(1+2i,2+i)x=(2+i,3+i),y=(1+2i,2+i)x=(2+i,3+i),y=(1+2i,2+i)
请求出(x,y)(x,y)(x,y),即复向量的内积。
求解思路
容易得知, y1‾=(1−2i)\overline{y_1}=(1-2i)y1=(1−2i),y2‾=(2−i)\overline{y_2}=(2-i)y2=(2−i)。
因此,
(x,y)=x1y1‾+x2y2‾+...+xnyn‾=∑i=1nxiyi‾=(2+i)(1−2i)+(3+i)(2−i) (x,y) = x_1 \overline{y_1} + x_2 \overline{y_2} + ... + x_n \overline{y_n} = {\displaystyle {\sum _{i=1}^{n}{x_{i} \overline{y_{i} }}}} = (2+i)(1-2i)+(3+i)(2-i) (x,y)=x1y1+x2y2+...+xnyn=i=1∑nxiyi=(2+i)(1−2i)+(3+i)(2−i)
⇒(x,y)=2−4i+i−2i2+6−3i+2i−i2=8−4i−3i2=11−4i \Rightarrow(x,y) = 2-4i+i-2i^2+6-3i+2i-i^2 = 8-4i-3i^2=11-4i ⇒(x,y)=2−4i+i−2i2+6−3i+2i−i2=8−4i−3i2=11−4i
于是(x,y)=11−4i(x,y)= 11-4i(x,y)=11−4i。
大功告成!最后感谢小伙伴们的学习噢~
