复向量内积例题详解
定义
设
x
,
y
∈
C
n
x,y \in C^n
x,y∈Cn,其内积
(
x
,
y
)
=
x
1
y
1
‾
+
x
2
y
2
‾
+
.
.
.
+
x
n
y
n
‾
=
∑
i
=
1
n
x
i
y
i
‾
(x,y) = x_1 \overline{y_1} + x_2 \overline{y_2} + ... + x_n \overline{y_n} = {\displaystyle {\sum _{i=1}^{n}{x_{i} \overline{y_{i} }}}}
(x,y)=x1y1+x2y2+...+xnyn=i=1∑nxiyi
其中,
C
C
C代表复数域。

计算示例
问题引入
现在有两个复向量:
x
=
(
2
+
i
,
3
+
i
)
,
y
=
(
1
+
2
i
,
2
+
i
)
x=(2+i,3+i),y=(1+2i,2+i)
x=(2+i,3+i),y=(1+2i,2+i)
请求出
(
x
,
y
)
(x,y)
(x,y),即复向量的内积。
求解思路
容易得知, y 1 ‾ = ( 1 − 2 i ) \overline{y_1}=(1-2i) y1=(1−2i), y 2 ‾ = ( 2 − i ) \overline{y_2}=(2-i) y2=(2−i)。
因此,
(
x
,
y
)
=
x
1
y
1
‾
+
x
2
y
2
‾
+
.
.
.
+
x
n
y
n
‾
=
∑
i
=
1
n
x
i
y
i
‾
=
(
2
+
i
)
(
1
−
2
i
)
+
(
3
+
i
)
(
2
−
i
)
(x,y) = x_1 \overline{y_1} + x_2 \overline{y_2} + ... + x_n \overline{y_n} = {\displaystyle {\sum _{i=1}^{n}{x_{i} \overline{y_{i} }}}} = (2+i)(1-2i)+(3+i)(2-i)
(x,y)=x1y1+x2y2+...+xnyn=i=1∑nxiyi=(2+i)(1−2i)+(3+i)(2−i)
⇒ ( x , y ) = 2 − 4 i + i − 2 i 2 + 6 − 3 i + 2 i − i 2 = 8 − 4 i − 3 i 2 = 11 − 4 i \Rightarrow(x,y) = 2-4i+i-2i^2+6-3i+2i-i^2 = 8-4i-3i^2=11-4i ⇒(x,y)=2−4i+i−2i2+6−3i+2i−i2=8−4i−3i2=11−4i
于是 ( x , y ) = 11 − 4 i (x,y)= 11-4i (x,y)=11−4i。
大功告成!最后感谢小伙伴们的学习噢~
