复向量的内积(例题详解)

本文详细介绍了复向量的内积定义,通过计算两个复向量(2+i,3+i)和(1+2i,2+i)的内积步骤,展示了如何进行计算并得出结果11-4i。适合初学者理解复数空间内的向量运算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

复向量内积例题详解


定义

x,y∈Cnx,y \in C^nx,yCn,其内积
(x,y)=x1y1‾+x2y2‾+...+xnyn‾=∑i=1nxiyi‾ (x,y) = x_1 \overline{y_1} + x_2 \overline{y_2} + ... + x_n \overline{y_n} = {\displaystyle {\sum _{i=1}^{n}{x_{i} \overline{y_{i} }}}} (x,y)=x1y1+x2y2+...+xnyn=i=1nxiyi
其中,CCC代表复数域。


计算示例


问题引入

现在有两个复向量:
x=(2+i,3+i),y=(1+2i,2+i)x=(2+i,3+i),y=(1+2i,2+i)x=(2+i,3+i)y=(1+2i,2+i)
请求出(x,y)(x,y)(x,y),即复向量的内积。


求解思路

容易得知, y1‾=(1−2i)\overline{y_1}=(1-2i)y1=(12i)y2‾=(2−i)\overline{y_2}=(2-i)y2=(2i)

因此,
(x,y)=x1y1‾+x2y2‾+...+xnyn‾=∑i=1nxiyi‾=(2+i)(1−2i)+(3+i)(2−i) (x,y) = x_1 \overline{y_1} + x_2 \overline{y_2} + ... + x_n \overline{y_n} = {\displaystyle {\sum _{i=1}^{n}{x_{i} \overline{y_{i} }}}} = (2+i)(1-2i)+(3+i)(2-i) (x,y)=x1y1+x2y2+...+xnyn=i=1nxiyi=(2+i)(12i)+(3+i)(2i)

⇒(x,y)=2−4i+i−2i2+6−3i+2i−i2=8−4i−3i2=11−4i \Rightarrow(x,y) = 2-4i+i-2i^2+6-3i+2i-i^2 = 8-4i-3i^2=11-4i (x,y)=24i+i2i2+63i+2ii2=84i3i2=114i

于是(x,y)=11−4i(x,y)= 11-4i(x,y)=114i


大功告成!最后感谢小伙伴们的学习噢~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

__Wedream__

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值