图像超分辨其实可以帮助小目标检测与语义分割这些任务,本文提出的框架简单有效
Github地址:https://github.com/wanglixilinx/DSRL.
Abstract:
当前最先进的语义分割方法通常使用高分辨率输入来获得高性能,这带来了巨大的计算代价,并限制了它们在资源受限的设备上的应用。在本文中,我们提出了一个简单而灵活的双分支框架,称为双重超分辨率学习(DSRL),以有效提高分割精度,而不会引起额外的计算成本。具体来说,该方法包括三部分:语义分割超分辨率(SSSR),单图像超分辨率(SISR)和特征相似性(FA)模块,该模块可以保持低分辨率输入的高分辨率表示,同时减少模型的计算复杂度。而且,它可以容易地推广到其他任务,例如人体姿势估计。这种简单而有效的方法具有很强的代表性,并在语义分割和人体姿态估计方面都表现出了良好的前景。具体来说,对于CityScapes上的语义分割,我们可以在具有相似FLOPs的情况下将mIoU提高> = 2%,并在保持70%FLOPs的情况下保持性能。对于人体姿势估计,我们可以在相同的FLOPs情况下获得>=2%的mAP,并在FLOPs减少30%的情况下保持mAP。
Introduction:
现有语义分割算法主要采用两种方式来保持高分辨率表示。:
1)一通过使用空洞卷积来替换跨步卷积来保持高分辨率表示&#