CVPR2020-图像超分辨率与语义分割结合,提升2-3个点 | Dual Super-Resolution Learning for Semantic Segmentation

图像超分辨其实可以帮助小目标检测与语义分割这些任务,本文提出的框架简单有效
Github地址:https://github.com/wanglixilinx/DSRL.

在这里插入图片描述

Abstract:

当前最先进的语义分割方法通常使用高分辨率输入来获得高性能,这带来了巨大的计算代价,并限制了它们在资源受限的设备上的应用。在本文中,我们提出了一个简单而灵活的双分支框架,称为双重超分辨率学习(DSRL),以有效提高分割精度,而不会引起额外的计算成本。具体来说,该方法包括三部分:语义分割超分辨率(SSSR),单图像超分辨率(SISR)和特征相似性(FA)模块,该模块可以保持低分辨率输入的高分辨率表示,同时减少模型的计算复杂度。而且,它可以容易地推广到其他任务,例如人体姿势估计。这种简单而有效的方法具有很强的代表性,并在语义分割和人体姿态估计方面都表现出了良好的前景。具体来说,对于CityScapes上的语义分割,我们可以在具有相似FLOPs的情况下将mIoU提高> = 2%,并在保持70%FLOPs的情况下保持性能。对于人体姿势估计,我们可以在相同的FLOPs情况下获得>=2%的mAP,并在FLOPs减少30%的情况下保持mAP。

Introduction:

在这里插入图片描述
现有语义分割算法主要采用两种方式来保持高分辨率表示。:
1)一通过使用空洞卷积来替换跨步卷积来保持高分辨率表示&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值