LLM agent

博客围绕大语言模型代理展开,探讨其崛起情况与潜在价值。大语言模型代理在信息技术领域有重要意义,涉及人工智能、算法等方面,对其研究有助于推动相关技术发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The Rise and Potential of Large Language Model Based Agents: A Survey

在这里插入图片描述

### 下载 LLM Agent 工具或软件 对于希望下载和安装 LLM Agent 或相关工具的开发者来说,有几个流行的选择可以帮助简化这个过程。以下是针对不同需求的具体指导: #### 使用 LangChain 框架 LangChain 是一种流行的用于构建基于对话的应用程序的框架,它能够显著简化 LLM Agent 的创建过程[^1]。 为了安装 LangChain,可以在命令行环境中执行如下 Python 包管理器 pip 命令: ```bash pip install langchain ``` 这将自动处理依赖关系并将必要的库文件下载到本地环境。 #### 利用 AutoGen 多代理会话框架 AutoGen 提供了一个强大的多代理会话框架以及一系列的工作流系统,适用于各种应用场景下的 LLM 开发者[^2]。 可以通过 GitHub 获取最新版本的源码,并按照官方文档中的说明完成设置: ```bash git clone https://github.com/microsoft/autogen.git cd autogen pip install . ``` 上述指令不仅克隆仓库还完成了包的本地化安装。 #### 考虑开源社区贡献项目 除了商业产品外,还有许多由活跃社区维护和支持的开源选项可供选择。这些平台通常具有较低的学习曲线和技术门槛,适合初学者探索和发展技能。 例如,可以从 Hugging Face Model Hub 中找到预训练好的 LLMs 及其对应的 SDK 来快速上手实践[^4]: [Hugging Face Models](https://huggingface.co/models) 通过这种方式可以直接加载模型而无需自行训练,极大地降低了入门难度。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值