图对比学习入门 Contrastive Learning on Graph

对比学习作为近两年的深度学习界的一大宠儿,受到了广大研究人员的青睐。而图学习因为图可以用于描述生活中广泛出现的非欧式数据,具有广大的应用前景。当图学习遇上了对比学习…

本文从对比学习入手,再介绍图对比学习模型,以及近年的一些有意思的模型。

注:本文需要一些信息论的基础,大家可以参考我的另一篇博客:
背景知识:从熵(Entropy)到互信息(MI,Mutual Information)

对比学习(Contrastive Learning)

本节以Contrastive Self-Supervised Learning, Ankesh Anand’s Blog原文为主要参考进行讲解。

Gelato Bet 与何凯明组的MoCo模型

“如果到2015年秋季的第一天(9月23日),在不使用任何额外的人工注释(例如ImageNet)作为预训练的情况下,将存在一种可以在Pascal VOC检测上达到或超越R-CNN性能的方法,⻢利克先生承诺向 埃弗罗斯先生购买一1杯冰淇淋(2勺:巧克力和香草)。” —Gelato Bet, Sept. 23, 2014 http://people.eecs.berkeley.edu/~efros/gelato_bet.html

这是Kateria Fragkiadaki, Philipp Krähenbühl, and Georgia Gkioxari在伯克利的休息室所定下的一个赌约。当时是2014年9月,当时正值R-CNN在CVPR2014中问世时期,几位大佬对ImageNet的有监督预训练提出了质疑。这是十分引人思考的:我们真的需要语义监督信息来学习良好的表示吗?

尽管最终赌约失败了,即2015年9月23日没有出现无标注信息超过有标注信息训练出来的R-CNN性能的新方法,但是这一赌约也见证了自监督学习的蓬勃发展。

时间来到了2019年,时隔5年,何凯明等人2019年提出的基于对比学习范式的MoCo模型,在Pascal VOC目标检测方面已经超过了有监督的方法,包括在其他任务中MoCo也有着很好的表现,如下图所示。
在这里插入图片描述
在这里插入图片描述

监督学习vs自监督学习

监督学习尽管作为机器学习领域应用最广的学习方式,但同样有着很大的弊端,即其对标注信息的过度依赖。

• 数据的内部结构远比标注提供的信息要丰富,因此通常需要大量的训练样本,但得到的模型往往是脆弱且敏感的;
• 在一些高维问题上,我们不能直接依赖监督信息;
• 在一些具体的学习任务中,获取标签的成本非常高;
• 标签信息通常适用于解决特定的任务,而不是可以做为知识一样可以重新利用。

自监督学习提供了一种替代方案,可以通过各种方式从数据本身中为学习算法挖掘了监督信息。

我们以重绘1美元纸币为例,如下图所示。左图为人们对着一张真正的1美元纸币的一个绘画草图,右图是人们凭借自己对美元纸币印象重绘的美元草图。尽管右图信息少、图像简单,但我们依然可以根据这些信息辨认出这是一张一美元的纸币。
在这里插入图片描述
我们不禁想问:是否存在不专注于具体细节的表示学习算法,来对高层特征编码以实现不同对象之间的区分? 对比学习给我们指出了一条道路。下文我们根据两条主流线路:生成式学习、对比学习进行分析,来阐述我们的观点。

生成式学习与对比学习

在这里插入图片描述
上图是生成方法和对比方法的模型结构图。

生成方法(Generative methods),如着色任务、AE系列模型:
• 像素级loss可能导致此类方法过于关注基于像素的细节,而不是抽象的语义信息
• 在于像素分析的方法难以有效的建立空间关联及对象的复杂结构

对比方法(Contrastive methods)通过正面和负面的例子来学习表征:
• 在未标记的ImageNet数据上训练并使用线性分类器的无监督对比方法已经超过了监督的AlexNet
• ImageNet上的对比式预训练成功地转移到了其它任务,并且胜过了监督的预训练任务(MoCo)

对比学习的工作方式

在这里插入图片描述

对比模型其实和FaceNet中的Triplet以及Word2Vec任务中的负采样有些许类似,如上图所示。

在这里插入图片描述

对比学习范例

对比学习的关键点在于如何选取锚点(anchor),正样本(Pos)和负样本(Neg)
在这里插入图片描述
在这里插入图片描述

从DIM(Deep InfoMax)到DGI(Deep Graph InfoMax)

本节以DGI(Deep Graph InfoMax)原文为主要参考进行讲解。
在这里插入图片描述
注:文章的一作为2年内拥有2500+的引量的GAT(Graph Attention Network,图注意力模型)提出者。

DIM(Deep InfoMax)

在这里插入图片描述
在这里插入图片描述

关于证明可以参考3篇知乎的文章结合着看看:
DEEP GRAPH INFOMAX 阅读笔记
DIM:通过最大化互信息来学习深度表征
深度学习中的互信息:无监督提取特征

在这里插入图片描述

DGI(Deep Graph InfoMax)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

实验效果

在这里插入图片描述

基于图数据扩充的图对比学习(GraphCL)

本节以GraphCL原文为主要参考进行讲解。
在这里插入图片描述

废话少说直接上模型:

GraphCL

图数据扩充方式
在这里插入图片描述

这里提到均匀分布有时候并不一定合理,大家可以看看基于这一点进行改进的中科院自动化所近期发表的文章:
Graph Contrastive Learning with Adaptive Augmentation, CASIA, 2020arxiv

下图是GraphCL的模型结构,主要由4个部分组成:
在这里插入图片描述

讨论

我们对生化分子和社交网络数据集进行实验,数据集信息见下
在这里插入图片描述
我们对不同的数据扩充方式进行组合进行实验,并与不进行预训练的方法进行对比,如下图所示(identical表示直接使用原图):
在这里插入图片描述
我们可以看出来:
• 数据扩充对图对比学习至关重要(引入图数据扩充很容易带来性能提升)
• 组合不同的扩充方式会带来更多的性能收益(对角线性能不佳)

此外进行进一步的分析我们可以得到:
在这里插入图片描述

实验

• GraphCL可以用来做图数据的自监督预训练,也可以作为无监督学习方法
• 对半监督任务无监督任务迁移学习任务、以及对抗攻击任务中都有不错的表现

文中及附录的实验其实挺丰富的,大家可以参考原文及附录。这里贴几张无监督任务的性能表现。
在这里插入图片描述

参考文献及博客:
Contrastive Self-Supervised Learning, Ankesh Anand’s Blog
Learning deep representations by mutual information estimation and maximization, 2019ICLR
Deep Graph Informax, 2019ICLR
Graph Contrastive Learning with Augmentations, 2020NeurIPS
Momentum Contrast for Unsupervised Visual Representation Learning, 2020CVPR
知乎:DEEP GRAPH INFOMAX 阅读笔记
知乎:DIM:通过最大化互信息来学习深度表征
知乎:深度学习中的互信息:无监督提取特征

  • 43
    点赞
  • 146
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
自监督对比学习是一种无监督学习方法,旨在通过将数据样本与其在相同任务下的变体进行比较来进行特征学习。其核心思想是将一个样本与自身的不同变体进行对比,以推动特征的区分度增加。 在自监督对比学习中,通常使用一种转换函数对输入样本进行变换,生成多个变体。这些变换可以是像旋转、裁剪、亮度调整等,也可以是对文本数据进行掩码、重排等操作。对于每个输入样本及其变体,模型将利用一个对比损失函数来度量它们之间的相似性。 通过自监督对比学习,模型会学习到一组鲁棒的特征表示。这些特征不仅能够区分同一样本与其变体,还能够区分不同样本之间的差异。通过不同样本之间的对比学习,模型可以学习到更加丰富的语义信息,提高数据的表征能力。 自监督对比学习在计算机视觉和自然语言处理等领域得到了广泛的应用。例如,在像领域,可以利用自监督对比学习来学习像中的局部特征、形状和纹理等信息。而在自然语言处理领域,可以通过对文本进行掩码、重排等方式来进行自监督对比学习,以学习词语、句子和文档的语义表示。 自监督对比学习的窥探给了我们一个更好的方式,通过无监督学习方法来解决许多现实世界中的问题。它为我们提供了一种从大规模数据中学习有用表示的方式,提高了学习算法的效率和泛化性能。通过进一步的研究和发展,自监督对比学习注定将在更多的领域中发挥重要的作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值