文章目录
Back Propagation:
知识:
w.item(): 可以直接将梯度变成标量
w.data: 取数值进行计算 不会构建计算图
w.zero_(): 释放数值 对其清零
计算过程可以看作在图上进行梯度传播
训练的目的:使Loss取更新。计算Loss对w的导数,对w进行更新。因为目标不是y_pred取最小,而是使损失Loss取最小。
如何将复杂的网络看成图,在图上传播梯度,根据链式法则求出梯度。(反向传播:Back propagation)
W:权重矩阵(m*n) b:偏置量
使用非线性函数:
代码:
import matplotlib.pyplot as plt
import torch
# PyTorch实现反向传播Backward
# 1.计算损失 2.Backward 3.梯度下降继续更新
x_data = [2.0]
y_data = [4.0]
w = torch.Tensor([1.0]) # 初始化权重
w.requires_grad = True # 表明w需要计算梯度
# define the linear model
def forward(x):
return x * w # 这里会构建计算图 将x转化成Tensor
# 损失函数的求解,构建计算图,并不是乘法或者乘方运算
def loss(x, y):
y_pred = forward(x)
return (y_pred - y) ** 2
# 打印学习之前的值,.item()表示输出张量的值
print("Predict (before training)", 4, forward(4).item())
learning_rate = 0.01
epoch_list = []
loss_list = []
# 训练过程
for epoch in range(100):
for x, y in zip(x_data, y_data):
l = loss(x, y) # forward前馈
l.backward() # 成员函数backward()向后传播 自动求出所有需要的梯度
print('\tgrad:', x, y, w.grad.item()) # 将梯度存到w之中,随后释放计算图 item()可以直接将梯度变成标量
w.data = w.data - learning_rate * w.grad.data # w的grad也是张量,计算应该取data 不去建立计算图
w.grad.data.zero_() # 释放data
epoch_list.append(epoch)
loss_list.append(l.item())
print("progress:", epoch, l.item())
print("predict (after training)", 4, forward(4).item())
# 绘制可视化
plt.plot(epoch_list, loss_list)
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.show()
说在最后的话:编写实属不易,若喜欢或者对你有帮助记得点赞 + 关注或者收藏哦~