深度学习实践 反向传播算法(在图上进行梯度传播非常重要的算法)

Back Propagation:

知识:

w.item(): 可以直接将梯度变成标量

w.data: 取数值进行计算 不会构建计算图

w.zero_(): 释放数值 对其清零

计算过程可以看作在图上进行梯度传播

image-20211027195612435

训练的目的:使Loss取更新。计算Loss对w的导数,对w进行更新。因为目标不是y_pred取最小,而是使损失Loss取最小

如何将复杂的网络看成图,在图上传播梯度,根据链式法则求出梯度。(反向传播:Back propagation)

W:权重矩阵(m*n) b:偏置量

image-20211027200719148

使用非线性函数:

image-20211027201128178 image-20211027202031423 image-20211028085847780

代码:

import matplotlib.pyplot as plt
import torch

# PyTorch实现反向传播Backward
# 1.计算损失 2.Backward 3.梯度下降继续更新
x_data = [2.0]
y_data = [4.0]

w = torch.Tensor([1.0])     # 初始化权重
w.requires_grad = True      # 表明w需要计算梯度

# define the linear model
def forward(x):
    return x * w            # 这里会构建计算图 将x转化成Tensor

# 损失函数的求解,构建计算图,并不是乘法或者乘方运算
def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) ** 2

# 打印学习之前的值,.item()表示输出张量的值
print("Predict (before training)", 4, forward(4).item())

learning_rate = 0.01
epoch_list = []
loss_list = []

# 训练过程
for epoch in range(100):
    for x, y in zip(x_data, y_data):
        l = loss(x, y)      # forward前馈
        l.backward()        # 成员函数backward()向后传播 自动求出所有需要的梯度
        print('\tgrad:', x, y, w.grad.item())   # 将梯度存到w之中,随后释放计算图 item()可以直接将梯度变成标量
        w.data = w.data - learning_rate * w.grad.data    # w的grad也是张量,计算应该取data 不去建立计算图
        w.grad.data.zero_()                     # 释放data
        epoch_list.append(epoch)
        loss_list.append(l.item())

    print("progress:", epoch, l.item())

print("predict (after training)", 4, forward(4).item())

# 绘制可视化
plt.plot(epoch_list, loss_list)
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.show()

说在最后的话:编写实属不易,若喜欢或者对你有帮助记得点赞 + 关注或者收藏哦~

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值