大数定律和中心极限定理

最近学习过程中会遇到概率相关的问题,这里对晦涩难懂的大数定律和中心极限定理做一个汇总。

大数定律

大数定律告诉我们: 当对一个随机变量进行无限次采样时,能用频率近似代替概率,能用样本均值近似代替总体均值。

  • 强大数定律想证明: 采样的次数越多,平均值几乎一定越来接近真实期望值
  • 弱大数定律想证明:采样的次数越多,平均值接近真实期望值的可能性越来越大

X 1 , X 2 , . . . , X n , . . . . X_1, X_2, ..., X_n, .... X1,X2,...,Xn,.... 这些变量相互独立,是服从 同一分布 的随机变量序列, E ( X k ) = μ E(X_k) = \mu E(Xk)=μ μ n = ∑ i = 1 n X i / n \mu_n = \sum\limits_{i=1}^{n} X_i / n μn=i=1nXi/n

强大数定律认为: ∀ ϵ > 0 , P ( lim ⁡ n → ∞ ∣ μ n − μ ∣ ≤ ϵ ) = 1 \forall \epsilon > 0, P(\lim\limits_{n\rightarrow\infty}|\mu_n - \mu|\leq\epsilon) = 1 ϵ>0,P(nlimμnμϵ)=1

弱大数定律认为: ∀ ϵ > 0 , lim ⁡ n → ∞ P ( ∣ μ n − μ ∣ ≤ ϵ ) = 1 \forall \epsilon > 0, \lim\limits_{n\rightarrow\infty}P(|\mu_n-\mu|\leq\epsilon)=1 ϵ>0,nlimP(μnμϵ)=1

上述公式的差别其实仅仅在 P P P l i m lim lim 符号的位置,但是两者的含义却有很大差异。我们不妨改写一下公式的极限部分

强大数定律:
∀ ϵ > 0 , ∃ N ∈ N + , \forall \epsilon>0, \exists N \in \mathbb{N^+}, ϵ>0,NN+, n > N n > N n>N 时, P ( ∣ μ n − μ ∣ < ϵ ) = 1 P(|\mu_n-\mu|<\epsilon)=1 P(μnμ<ϵ)=1

弱大数定律
∀ ϵ > 0 , ∀ δ > 0 , ∃ N ∈ N + \forall \epsilon>0, \forall \delta > 0, \exists N \in \mathbb{N^+} ϵ>0,δ>0,NN+,当 n > N n > N n>N 时, ∣ P ( ∣ μ n − μ ∣ ≤ ϵ ) − 1 ∣ ≤ δ |P(|\mu_n - \mu|\leq\epsilon)-1| \leq \delta P(μnμϵ)1δ

由上述化简后的式子可以看出:

  • 对于强大数定律, 随着 n n n 的不断增大, ∀ ϵ > 0 , P ( ∣ μ n − μ ∣ < ϵ ) = 1 \forall \epsilon>0, P(|\mu_n-\mu|<\epsilon)=1 ϵ>0P(μnμ<ϵ)=1 这件事几乎是必然发生, μ n \mu_n μn 几乎一定能 不断接近真实的 μ \mu μ

  • 对于弱大数定律,随着 n n n 的不断增大, ∀ ϵ > 0 , P ( ∣ μ n − μ ∣ < ϵ ) = 1 \forall \epsilon>0, P(|\mu_n-\mu|<\epsilon)=1 ϵ>0P(μnμ<ϵ)=1 这件事 发生的概率 是逐渐增大的, μ n \mu_n μn 越有可能 接近真实的 μ \mu μ


以上总结参考于:https://www.zhihu.com/question/21110761

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值